Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4140, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468493

RESUMO

Kidney stone disease causes significant morbidity and increases health care utilization. In this work, we decipher the cellular and molecular niche of the human renal papilla in patients with calcium oxalate (CaOx) stone disease and healthy subjects. In addition to identifying cell types important in papillary physiology, we characterize collecting duct cell subtypes and an undifferentiated epithelial cell type that was more prevalent in stone patients. Despite the focal nature of mineral deposition in nephrolithiasis, we uncover a global injury signature characterized by immune activation, oxidative stress and extracellular matrix remodeling. We also identify the association of MMP7 and MMP9 expression with stone disease and mineral deposition, respectively. MMP7 and MMP9 are significantly increased in the urine of patients with CaOx stone disease, and their levels correlate with disease activity. Our results define the spatial molecular landscape and specific pathways contributing to stone-mediated injury in the human papilla and identify associated urinary biomarkers.


Assuntos
Cálculos Renais , Medula Renal , Humanos , Medula Renal/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 7 da Matriz , Oxalato de Cálcio/metabolismo , Transcriptoma , Cálculos Renais/genética , Cálculos Renais/metabolismo
2.
Anat Rec (Hoboken) ; 305(7): 1701-1711, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34825513

RESUMO

Calcium oxalate (CaOx) stones can grow attached to the renal papillary calcification known as Randall's plaque. Although stone growth on Randall's plaque is a common phenomenon, this mechanism of stone formation is still poorly understood. The objective of this study was to investigate the microenvironment of mature Randall's plaque, explore its molecular composition and differentiate plaque from CaOx overgrowth using multimodal imaging on demineralized stone sections. Fluorescence imaging showed consistent differences in autofluorescence patterns between Randall's plaque and calcium oxalate overgrowth regions. Second harmonic generation imaging established the presence of collagen only in regions of decalcified Randall's plaque but not in regions of CaOx overgrowth matrix. Surprisingly, in these stone sections we observed cell nuclei with preserved morphology within regions of mature Randall's plaque. These conserved cells had variable expression of vimentin and CD45. The presence of nuclei in mature plaque indicates that mineralization is not necessarily associated with cell death. The markers identified suggest that some of the entrapped cells may be undergoing dedifferentiation or could emanate from a mesenchymal or immune origin. We propose that entrapped cells may play an important role in the growth and maintenance of Randall's plaque. Further characterization of these cells and thorough analyses of the mineralized stone forming renal papilla will be fundamental in understanding the pathogenesis of Randall's plaque and CaOx stone formation.


Assuntos
Oxalato de Cálcio , Cálculos Renais , Oxalato de Cálcio/análise , Núcleo Celular/química , Matriz Extracelular/patologia , Humanos , Cálculos Renais/patologia , Medula Renal/química , Medula Renal/patologia
3.
Urolithiasis ; 50(1): 21-28, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34091721

RESUMO

Jackstone calculi, having arms that extend out from the body of the stone, were first described over a century ago, but this morphology of stones has been little studied. We examined 98 jackstones from 50 different patient specimens using micro-computed tomography (micro CT) and infrared (IR) spectroscopy. Micro CT showed that jackstone arms consisted of an X-ray lucent core within each arm. This X-ray lucent core frequently showed sporadic, thin layers of apatite arranged transversely to the axis of the arm. The shells of the jackstones were always composed of calcium oxalate (CaOx), and with the monohydrate form the majority or sole mineral. Study of layering in the shell regions by micro CT showed that growth lines extended from the body of the stone out onto jack arms and that the thickness of the shell covering of jack arms often thinned with distance from the stone body, suggesting that the arms grew at a faster radial rate than did the stone body. Histological cross-sections of decalcified jackstone arms showed the core to be more highly autofluorescent than was the CaOx shell, and immunohistochemistry showed the core to be enriched in Tamm-Horsfall protein. We hypothesize that the protein-rich core of a jack arm might preferentially bind more protein from the urine and resist deposition of CaOx, such that the arm grows in a linear manner and at a faster rate than the bulk of the stone. This hypothesis thus predicts an enrichment of certain urine proteins in the core of the jack arm, a theory that is testable by appropriate analysis.


Assuntos
Braço , Cálculos Renais , Oxalato de Cálcio , Humanos , Cálculos Renais/diagnóstico por imagem , Microtomografia por Raio-X , Raios X
4.
Physiol Rep ; 9(1): e14658, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33403824

RESUMO

The molecular mechanisms by which kidney stones grow are largely unknown. Organic molecules from the urine combine with mineral crystals to form stones, but analysis of the stone matrix has revealed over a thousand different proteins, with no clues as to which are important for stone growth. Molecules that are present in every layer of a stone would be candidates for having an essential function, and thus the analysis of the stone matrix at a microscopic level is necessary. For this purpose, kidney stones were demineralized, sectioned, stained, and imaged by microscopy, using micro CT for precise orientation. Histological staining demonstrated heterogeneity in the density of adjacent layers within stones. Additional results also showed brilliant and unique autofluorescence patterns in decalcified nephroliths, indicating heterogeneous organic composition in adjacent layers. Regions of calcium oxalate (CaOx) stones were dissected using laser microdissection (LMD) for protein analysis. LMD of broad regions of demineralized CaOx stone sections yielded the same proteins as those found in different specimens of pulverized CaOx stones. These innovative methodologies will allow spatial mapping of protein composition within the heterogeneous stone matrix. Proteins that consistently coincide spatially with mineral deposition would be candidates for molecules essential for stone growth. This kind of analysis will be required to assess which of the thousand proteins in the stone matrix may be fundamental for stone growth.


Assuntos
Oxalato de Cálcio/química , Cálculos Renais/patologia , Humanos , Cálculos Renais/química , Cálculos Renais/diagnóstico por imagem , Cálculos Renais/metabolismo , Microdissecção e Captura a Laser/métodos , Microtomia/métodos , Proteômica/métodos , Microtomografia por Raio-X/métodos
5.
Alzheimers Res Ther ; 12(1): 93, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758274

RESUMO

BACKGROUND: A substantial number of patients clinically diagnosed with Alzheimer's disease do not harbor amyloid pathology. We analyzed the presence and extent of tau deposition and neurodegeneration in amyloid-positive (AD) and amyloid-negative (nonAD) ADNI subjects while also taking into account age of onset (< or > 65 years) as we expected that the emerging patterns could vary by age and presence or absence of brain amyloidosis. METHODS: One hundred and ten early-onset AD (EOAD), 121 EOnonAD, 364 late-onset AD (LOAD), and 175 LOnonAD mild cognitive impairment (MCI) and dementia (DEM) subjects were compared to 291 ADNI amyloid-negative control subjects using voxel-wise regression in SPM12 with cluster-level family-wise error correction at pFWE < 0.05). A subset of these subjects also received 18F-flortaucipir scans and allowed for analysis of global tau burden. RESULTS: As expected, relative to LOAD, EOAD subjects showed more extensive neurodegeneration and tau deposition in AD-relevant regions. EOnonADMCI showed no significant neurodegeneration, while EOnonADDEM showed bilateral medial and lateral temporal, and temporoparietal hypometabolism. LOnonADMCI and LOnonADDEM showed diffuse brain atrophy and a fronto-temporo-parietal hypometabolic pattern. LOnonAD and EOnonAD subjects failed to show significant tau binding. CONCLUSIONS: LOnonAD subjects show a fronto-temporal neurodegenerative pattern in the absence of tau binding, which may represent underlying hippocampal sclerosis with TDP-43, also known as limbic-predominant age-related TDP-43 encephalopathy (LATE). The hypometabolic pattern observed in EOnonADDEM seems similar to the one observed in EOADMCI. Further investigation into the underlying etiology of EOnonAD is warranted.


Assuntos
Doença de Alzheimer , Amiloidose , Disfunção Cognitiva , Idoso , Peptídeos beta-Amiloides/metabolismo , Amiloidose/complicações , Amiloidose/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA