Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 163: 114845, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37167730

RESUMO

Chronic pain is an enormous public health concern, and its treatment is still an unmet medical need. Starting from data highlighting the promising effects of some nonsteroidal anti-inflammatory drugs in combination with gabapentin in pain treatment, we sought to combine ketoprofen lysine salt (KLS) and gabapentin to obtain an effective multimodal therapeutic approach for chronic pain. Using relevant in vitro models, we first demonstrated that KLS and gabapentin have supra-additive effects in modulating key pathways in neuropathic pain and gastric mucosal damage. To leverage these supra-additive effects, we then chemically combined the two drugs via co-crystallization to yield a new compound, a ternary drug-drug co-crystal of ketoprofen, lysine and gabapentin (KLS-GABA co-crystal). Physicochemical, biodistribution and pharmacokinetic studies showed that within the co-crystal, ketoprofen reaches an increased gastrointestinal solubility and permeability, as well as a higher systemic exposure in vivo compared to KLS alone or in combination with gabapentin, while both the constituent drugs have increased central nervous system permeation. These unique characteristics led to striking, synergistic anti-nociceptive and anti-inflammatory effects of KLS-GABA co-crystal, as well as significantly reduced spinal neuroinflammation, in translational inflammatory and neuropathic pain rat models, suggesting that the synergistic therapeutic effects of the constituent drugs are further boosted by the co-crystallization. Notably, while strengthening the therapeutic effects of ketoprofen, KLS-GABA co-crystal showed remarkable gastrointestinal tolerability in both inflammatory and chronic neuropathic pain rat models. In conclusion, these results allow us to propose KLS-GABA co-crystal as a new drug candidate with high potential clinical benefit-to-risk ratio for chronic pain treatment.


Assuntos
Dor Crônica , Cetoprofeno , Neuralgia , Ratos , Animais , Cetoprofeno/efeitos adversos , Gabapentina/uso terapêutico , Doenças Neuroinflamatórias , Lisina/uso terapêutico , Lisina/farmacologia , Dor Crônica/tratamento farmacológico , Distribuição Tecidual , Anti-Inflamatórios não Esteroides/efeitos adversos , Neuralgia/tratamento farmacológico
2.
Chem Sci ; 10(39): 9042-9050, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31827746

RESUMO

A conceptionally novel nucleophilic substitution approach to synthetically important alkyl bromides is presented. Using molecular bromine (Br2), readily available secondary benzyl and tertiary alkyl phenyl sulphides are converted into the corresponding bromides under exceptionally mild, acid- and base-free reaction conditions. This simple transformation allows the isolation of elimination sensitive benzylic ß-bromo carbonyl and nitrile compounds in mostly high yields and purities. Remarkably, protic functionalities such as acids and alcohols are tolerated. Enantioenriched benzylic ß-sulphido esters, readily prepared by asymmetric sulpha-Michael addition, produce the corresponding inverted bromides with high stereoselectivities, approaching complete enantiospecificity at -40 °C. Significantly, the reported benzylic ß-bromo esters can be stored without racemisation for prolonged periods at -20 °C. Their synthetic potential was demonstrated by the one-pot preparation of γ-azido alcohol (S)-5 in 90% ee. NMR studies revealed an initial formation of a sulphide bromine adduct, which in turn is in equilibrium with a postulated dibromosulphurane intermediate that undergoes C-Br bond formation.

3.
Org Lett ; 19(4): 918-921, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28151676

RESUMO

The chlorination of readily available secondary and tertiary alkyl phenyl sulfides using (dichloroiodo)benzene (PhICl2) is reported. This mild and rapid nucleophilic chlorination is extended to sulfa-Michael derived sulfides, affording elimination-sensitive ß-chloro carbonyl and nitro compounds in good yields. The chlorination of enantioenriched benzylic sulfides to the corresponding inverted chlorides proceeds with high stereospecificity, thus providing a formal entry into enantioenriched chloro-Michael adducts. A mechanism implying the formation of a dichloro-λ4-sulfurane intermediate is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA