RESUMO
Whereas pathogen-specific T and B cells are a primary focus of interest during infectious disease, we have used COVID-19 to ask whether their emergence comes at a cost of broader B cell and T cell repertoire disruption. We applied a genomic DNA-based approach to concurrently study the immunoglobulin-heavy (IGH) and T cell receptor (TCR) ß and δ chain loci of 95 individuals. Our approach detected anticipated repertoire focusing for the IGH repertoire, including expansions of clusters of related sequences temporally aligned with SARS-CoV-2-specific seroconversion, and enrichment of some shared SARS-CoV-2-associated sequences. No significant age-related or disease severity-related deficiencies were noted for the IGH repertoire. By contrast, whereas focusing occurred at the TCRß and TCRδ loci, including some TCRß sequence-sharing, disruptive repertoire narrowing was almost entirely limited to many patients aged older than 50 y. By temporarily reducing T cell diversity and by risking expansions of nonbeneficial T cells, these traits may constitute an age-related risk factor for COVID-19, including a vulnerability to new variants for which T cells may provide key protection.
Assuntos
Imunidade Adaptativa , COVID-19 , Cadeias Pesadas de Imunoglobulinas , Receptores de Antígenos de Linfócitos T alfa-beta , Receptores de Antígenos de Linfócitos T , SARS-CoV-2 , Imunidade Adaptativa/genética , Idoso , Linfócitos B/imunologia , COVID-19/genética , COVID-19/imunologia , Loci Gênicos , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , SARS-CoV-2/imunologia , Soroconversão , Linfócitos T/imunologiaRESUMO
Vector-borne transmission of Chagas disease in urban areas of Argentina has been an overlooked phenomena. We conducted the first comprehensive cross-sectional study of domestic infestation with Triatoma infestans and vector infection with Trypanosoma cruzi in a metropolitan area of San Juan, Argentina. Our results document the occurrence of T. infestans infected with T. cruzi in human sleeping quarters. In this urban setting, we also show that infestation was associated with construction materials, the presence of chickens, cats and a large number of dogs that can provide blood meals for the vector. Our findings reveal new challenges for vectorial control agencies.
Assuntos
Doença de Chagas , Triatoma , Trypanosoma cruzi , Animais , Argentina , Gatos , Galinhas , Estudos Transversais , Cães , Insetos VetoresRESUMO
Given the heterogeneous nature of antigens, major histocompatibility complex class I (MHC I) intracellular transport intersects with multiple degradation pathways for efficient peptide loading and presentation to cytotoxic T cells. MHC I loading with peptides in the endoplasmic reticulum (ER) is a tightly regulated process, while post-ER intracellular transport is considered to occur by default, leading to peptide-bearing MHC I delivery to the plasma membrane. We show here that MHC I traffic is submitted to a previously uncharacterized sorting step at the trans Golgi network (TGN), dependent on the ubiquitination of its cytoplasmic tail lysine residues. MHC I ubiquitination is mediated by the E3 ligase membrane-associated RING-CH 9 (MARCH9) and allows MHC I access to Syntaxin 6-positive endosomal compartments. We further show that MARCH9 can also target the human MHC I-like lipid antigen-presentation molecule CD1a. MARCH9 expression is modulated by microbial pattern exposure in dendritic cells (DCs), thus revealing the role of this ubiquitin E3 ligase in coordinating MHC I access to endosomes and DC activation for efficient antigen cross-presentation.
Assuntos
Antígenos CD1/metabolismo , Membrana Celular/metabolismo , Células Dendríticas/imunologia , Endossomos/metabolismo , Antígenos HLA/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Rede trans-Golgi/metabolismo , Apresentação de Antígeno , Antígenos CD1/genética , Células Cultivadas , Retículo Endoplasmático/metabolismo , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Proteínas de Membrana , Monócitos/imunologia , Domínios Proteicos/genética , Sinais Direcionadores de Proteínas/genética , Transporte Proteico , Proteínas Qa-SNARE/metabolismo , Ubiquitina-Proteína Ligases , UbiquitinaçãoRESUMO
RNA-binding E3 ubiquitin ligases were recently identified, though their function remains unclear. While studying the regulation of the MHC class I (MHC-I) pathway, we here characterize a novel role for ubiquitin in mRNA degradation. MHC-I molecules provide ligands for both cytotoxic T-lymphocytes as well as natural killer (NK) cells, and play a central role in innate and adaptive immunity. MHC-I cell-surface expression is closely monitored by NK cells, whose killer immunoglobulin-like receptors encode MHC-I-specific activatory and inhibitory receptors, implying that MHC-I expression needs to be tightly regulated. In a functional siRNA ubiquitome screen we identified MEX-3C, a novel RNA-binding ubiquitin E3 ligase, as responsible for the post-transcriptional, allotype-specific regulation of MHC-I. MEX-3C binds the 3'UTR of HLA-A2 mRNA, inducing its RING-dependent degradation. The RING domain of MEX-3C is not required for HLA-A2 cell-surface downregulation, but regulates the degradation of HLA-A2 mRNA. We have therefore uncovered a novel post-transcriptional pathway for regulation of HLA-A allotypes and provide a link between ubiquitination and mRNA degradation.
Assuntos
Antígeno HLA-A2/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Linhagem Celular , Células HEK293 , Antígeno HLA-A2/genética , Humanos , Células Matadoras Naturais/metabolismo , UbiquitinaçãoRESUMO
The assembly of MHC class I molecules is governed by stringent endoplasmic reticulum (ER) quality control mechanisms. MHC class I heavy chains that fail to achieve their native conformation in complex with ß2-microglobulin (ß2m) and peptide are targeted for ER-associated degradation. This requires ubiquitination of the MHC class I heavy chain and its dislocation from the ER to the cytosol for proteasome-mediated degradation, although the cellular machinery involved in this process is unknown. Using an siRNA functional screen in ß2m-depleted cells, we identify an essential role for the E3 ligase HRD1 (Synoviolin) together with the E2 ubiquitin-conjugating enzyme UBE2J1 in the ubiquitination and dislocation of misfolded MHC class I heavy chains. HRD1 is also required for the ubiquitination and degradation of the naturally occurring hemochromatosis-associated HFE-C282Y mutant, which is unable to bind ß2m. In the absence of HRD1, misfolded HLA-B27 accumulated in cells with a normal MHC class I assembly pathway, and HRD1 depletion prevented the appearance of low levels of cytosolic unfolded MHC I heavy chains. HRD1 and UBE2J1 associate in a complex together with non-ß2m bound MHC class I heavy chains, Derlin 1, and p97 and discriminate misfolded MHC class I from conformational MHC I-ß2m-peptide heterotrimers. Together these data support a physiological role for HRD1 and UBE2J1 in the homeostatic regulation of MHC class I assembly and expression.
Assuntos
Retículo Endoplasmático/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células HeLa , Humanos , Hidrólise , Dobramento de Proteína , RNA Interferente Pequeno/genética , UbiquitinaçãoRESUMO
[This corrects the article DOI: 10.1371/journal.pntd.0011003.].
RESUMO
BACKGROUND: Triatoma guasayana is considered an emerging vector of Chagas disease in the Southern Cone of South America. The presence of a triatomine population with brachypterous individuals, in which both wings are reduced, has recently been reported for this species. The aim of the present study was to determine if flight-related traits varied across populations, if these traits could explain differences in flight capacity across populations and if flight-related traits are associated with geographic and/or climatic variation. METHODS: The study involved 66 male T. guasayana specimens from 10 triatomine populations. Digital images of wing, head and pronotum were used to estimate linear and geometric morphometric variables. Variations in size and shape were analysed using one-way analysis of variance and canonical variate analysis (CVA), respectively. Mantel tests were applied to analyse the relationship between morphometric and geographic distances, and the association between size measurements was analysed using Pearson's correlation. We explored covariation between size and shape variables using partial least square analyses (PLS). The association of geographic and climatic variables with size measurements was tested using linear regression analyses. We performed PLS analyses for shape measurements. RESULTS: Wing size differed significantly across triatomine populations. The CVA showed that wing shape of the brachypterous population is well discriminated from that of the other populations. The Mantel test showed a positive and significant association between wing shape and geographic distances. The heads of the brachypterous population were significantly larger than those of the other populations. Similar to wing shape, the head shape of the brachypterous population was well discriminated from those of the other populations. Pronotum width did not show significant differences across populations. Geographic and climatic factors were associated with size and shape of both the wing and head, but not with pronotum width. CONCLUSIONS: Most of the traits related to flight dispersal varied across populations. Wing shape and head shape were found to be better markers for differentiated morphological variation across populations. Head measurements also varied in accordance with this condition. Geographic and climatic variables were associated with most of the flight-related traits.
Assuntos
Doença de Chagas , Triatoma , Humanos , Animais , Masculino , Fenótipo , América do Sul , Variação Biológica da População , Asas de AnimaisRESUMO
BACKGROUND: Chagas is a complex and multidimensional socio-environmental health phenomenon, in which different components converge and interact. Historically, this disease was associated with insect vectors found in the rural environment. However, in the Americas, we are currently facing a new paradigm, in which different scenarios allow maintaining the vectorial transmission of the parasite through triatomine populations that either occasionally enter the dwellings or colonize urban environments. METHODOLOGY/PRINCIPAL FINDINGS: Records of scientific reports available in the PubMed and LILACS search engines were retrieved, using three criteria according to the main triatomine genera of epidemiological importance and to the general scientific production on Chagas disease in urban contexts. Results showed that records on the occurrence of vectors in urban dwellings began to increase in the last three decades. Results also showed that the main species of triatomines collected inside dwellings (18 in total) belong mainly to the genera Triatoma and Panstrongylus, with most species (16/18, 88.8%) infected with the parasite, and that infestation of triatomine species occurs in all types of cities (small, medium and large, including megalopolises), from Argentina to the USA. CONCLUSIONS/SIGNIFICANCE: Urban Chagas represents a new challenge that adds a different dimension to the problem of Chagas disease due to the particular characteristics of the lifestyle in urban agglomerates. The new scenario will require adaptations of the programs of control of vector to this shift from rural to urban settlements.
Assuntos
Doença de Chagas , Panstrongylus , Triatoma , Trypanosoma cruzi , Animais , Humanos , Doença de Chagas/parasitologia , Triatoma/parasitologia , Panstrongylus/parasitologia , Cidades/epidemiologiaRESUMO
Non-coding RNAs and their interaction with RNA-binding proteins regulate mRNA levels in key cellular processes. This has intensified interest in post-transcriptional regulation. Recent studies on the turnover of AU-rich cytokine mRNAs have linked mRNA metabolism with ubiquitination. Ubiquitin is well recognized for its role in protein regulation/degradation. In the present paper, we describe a new group of RNA-binding E3 ubiquitin ligases which are predicted to bind and regulate RNA stability. Although much effort has been focused on understanding the role of these proteins as key regulators of mRNA turnover, the requirement for E3 ligase activity in mRNA decay remains unclear. It is remarkable that the ubiquitin system is involved, either directly or indirectly, in both the degradation of nucleic acids as well as proteins. These new RNA-binding E3 ligases are potential candidates which link two important cellular regulatory pathways: the regulation of both protein and mRNA stability.
Assuntos
Regulação da Expressão Gênica , RNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Humanos , Estrutura Terciária de Proteína , RNA/genética , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genéticaRESUMO
A Correction to this paper has been published: https://doi.org/10.1038/s41591-020-01186-5.
RESUMO
Improved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies. Some signature traits identify links with other settings of immunoprotection and immunopathology; others, including basophil and plasmacytoid dendritic cell depletion, correlate strongly with disease severity; while a third set of traits, including a triad of IP-10, interleukin-10 and interleukin-6, anticipate subsequent clinical progression. Hence, contingent upon independent validation in other COVID-19 cohorts, individual traits within this signature may collectively and individually guide treatment options; offer insights into COVID-19 pathogenesis; and aid early, risk-based patient stratification that is particularly beneficial in phasic diseases such as COVID-19.
Assuntos
Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Infecções por Coronavirus/imunologia , Citocinas/imunologia , Células Dendríticas/imunologia , Pneumonia Viral/imunologia , Linfócitos T/imunologia , Idoso , Subpopulações de Linfócitos B/imunologia , Basófilos/imunologia , Betacoronavirus , COVID-19 , Estudos de Casos e Controles , Ciclo Celular , Quimiocina CXCL10/imunologia , Quimiocinas/imunologia , Estudos de Coortes , Infecções por Coronavirus/sangue , Progressão da Doença , Feminino , Citometria de Fluxo , Hospitalização , Humanos , Memória Imunológica , Imunofenotipagem , Interleucina-10/imunologia , Interleucina-6/imunologia , Contagem de Leucócitos , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Prognóstico , SARS-CoV-2 , Índice de Gravidade de Doença , Subpopulações de Linfócitos T/imunologia , Regulação para CimaRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Mouse models of human cancer are a potential preclinical setting for drug testing and for development of methods for delivery of macromolecular drugs to tumors. We have assessed a mouse model of leukemia caused by Mll-Enl protein fusion as a preclinical situation in which myeloid-lineage leukemia results from de novo occurrence of chromosomal translocations between Mll and Enl genes. Here, we show that the mouse leukemias respond to cytosine arabinoside, a frontline treatment for human leukemia. The observations show that the myeloid cells are susceptible to the drug and the mice undergo a remission that comprises a reduction of the myeloid population of cells and recovery of the lymphoid population. This translocator model should therefore prove useful for future drug assessments against the recurrent mixed-lineage leukemia-associated translocations.
Assuntos
Antineoplásicos/farmacologia , Citarabina/farmacologia , Leucemia Experimental/patologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/genética , Animais , Linhagem Celular Tumoral , Leucemia Experimental/genética , Camundongos , Modelos TeóricosRESUMO
TPL-2 MAP 3-kinase promotes inflammation in numerous mouse disease models and is an attractive anti-inflammatory drug target. However, TPL-2-deficient (Map3k8 -/-) mice develop exacerbated allergic airway inflammation to house dust mite (HDM) compared with wild type controls. Here, we show that Map3k8D270A/D270A mice expressing kinase dead TPL-2 had an unaltered response to HDM, indicating that the severe airway inflammation observed in Map3k8 -/- mice is not due to blockade of TPL-2 signaling and rather reflects a TPL-2 adaptor function. Severe allergic inflammation in TPL-2-deficient mice was likely due to reduced levels of ABIN-2 (TNIP2), whose stability depends on TPL-2 expression. Tnip2E256K knock-in mutation, which reduced ABIN-2 binding to A20, augmented the HDM-induced airway inflammation, but did not affect TPL-2 expression or signaling. These results identify ABIN-2 as a novel negative regulator of allergic airway responses and importantly indicate that TPL-2 inhibitors would not have unwanted allergic comorbidities.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Regulação Enzimológica da Expressão Gênica/imunologia , Hipersensibilidade/imunologia , MAP Quinase Quinase Quinases/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Proteínas Proto-Oncogênicas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Hipersensibilidade/genética , Hipersensibilidade/patologia , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , MAP Quinase Quinase Quinases/genética , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa/imunologiaRESUMO
The activation of the rate-limiting step in steroid biosynthesis, that is the transport of cholesterol into the mitochondria, is dependent on PKA-mediated events triggered by hormones like ACTH and LH. Two of such events are the protein tyrosine dephosphorylation mediated by protein tyrosine phosphatases (PTPs) and the release of arachidonic acid (AA) mediated by two enzymes, ACS4 (acyl-CoA synthetase 4) and Acot2 (mitochondrial thioesterase). ACTH and LH regulate the activity of PTPs and Acot2 and promote the induction of ACS4. Here we analyzed the involvement of PTPs on the expression of ACS4. We found that two PTP inhibitors, acting through different mechanisms, are both able to abrogate the hormonal effect on ACS4 induction. PTP inhibitors also reduce the effect of cAMP on steroidogenesis and on the level of StAR protein, which facilitates the access of cholesterol into the mitochondria. Moreover, our results indicate that exogenous AA is able to overcome the inhibition produced by PTP inhibitors on StAR protein level and steroidogenesis. Then, here we describe a link between PTP activity and AA release, since ACS4 induction is under the control of PTP activity, being a key event for AA release, StAR induction and steroidogenesis.
Assuntos
Ácido Araquidônico/metabolismo , Coenzima A Ligases/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Proteínas Tirosina Fosfatases/metabolismo , Neoplasias do Córtex Suprarrenal , Hormônio Adrenocorticotrópico/farmacologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Tumor de Células de Leydig , Hormônio Luteinizante/farmacologia , Masculino , CamundongosRESUMO
Vector-borne transmission of Chagas disease in urban areas of Argentina has been an overlooked phenomena. We conducted the first comprehensive cross-sectional study of domestic infestation with Triatoma infestans and vector infection with Trypanosoma cruzi in a metropolitan area of San Juan, Argentina. Our results document the occurrence of T. infestans infected with T. cruzi in human sleeping quarters. In this urban setting, we also show that infestation was associated with construction materials, the presence of chickens, cats and a large number of dogs that can provide blood meals for the vector. Our findings reveal new challenges for vectorial control agencies.
Assuntos
Animais , Gatos , Cães , Triatoma , Trypanosoma cruzi , Doença de Chagas , Argentina , Galinhas , Estudos Transversais , Insetos VetoresRESUMO
We have described that, in adrenal and Leydig cells, the hormonal regulation of free arachidonic acid (AA) concentration is mediated by the concerted action of two enzymes: an acyl-CoA thioesterase (MTE-I or ARTISt) and an acyl-CoA synthetase (ACS4). In this study we analyzed the potential regulation of these proteins by hormonal action in steroidogenic cells. We demonstrated that ACS4 is rapidly induced by adrenocorticotropin (ACTH) and cAMP in Y1 adrenocortical cells. The hormone and its second messenger increased ACS4 protein levels in a time and concentration dependent way. Maximal concentration of ACTH (10 mIU/ml) produced a significant effect after 15 min of treatment and exerted the highest increase (3-fold) after 30 min. Moreover, (35)S-methionine incorporation showed that the increase in ACS4 protein levels is due to an increase in the de novo synthesis of the protein. On the contrary MTE-I protein levels in Y1 and MA-10 cells did not change after steroidogenic stimuli. In contrast with the effect observed on protein levels, stimulation of both cell lines did not change ACS4 RNA levels during the first hour of treatment, indicating that the effect of both stimuli is exerted at the level of ACS4 protein synthesis.StAR protein induction has a key role on the activation of steroidogenesis since this protein increases the rate of the limiting step of the whole process. In agreement with the fact that the inhibition of ACS4 activity by triacsin C blocks cAMP-stimulated progesterone production by MA-10 Leydig cells, here we demonstrated that ACS4 inhibition also reduces StAR protein levels. Moreover, exogenous AA was able to overcome the effect of triacsin C on both events, StAR induction and steroidogenesis. These results were confirmed by experiments using ACS4-targeted siRNA which result in a reduction in both ACS4 and StAR protein levels. The concomitant decrease in steroid production was overcome by the addition of AA to the knocked-out cells. In summary, this study suggests that in adrenal and Leydig cells the hormonal action prompts the synthesis of a labile protein, ACS4, which activity is involved in the regulation of AA release and is essential for steroidogenesis and StAR protein induction.
Assuntos
Hormônio Adrenocorticotrópico/metabolismo , Ácido Araquidônico/metabolismo , Coenzima A Ligases/metabolismo , Transdução de Sinais , Animais , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação , Masculino , Camundongos , RNA Interferente Pequeno/genética , Ratos , Ratos WistarRESUMO
The regulation of protein and mRNA turnover is essential for many cellular processes. We recently showed that ubiquitin--traditionally linked to protein degradation--directly regulates the degradation of mRNAs through the action of a newly identified family of RNA-binding E3 ubiquitin ligases. How ubiquitin regulates mRNA decay remains unclear. Here, we identify a new role for ubiquitin in regulating deadenylation, the initial and often rate-limiting step in mRNA degradation. MEX-3C, a canonical member of this family of RNA-binding ubiquitin ligases, associates with the cytoplasmic deadenylation complexes and ubiquitinates CNOT7(Caf1), the main catalytic subunit of the CCR4-NOT deadenylation machinery. We establish a new role for ubiquitin in regulating MHC-I mRNA deadenylation as ubiquitination of CNOT7 by MEX-3C regulates its deadenylation activity and is required for MHC-I mRNA degradation. Since neither proteasome nor lysosome inhibitors rescued MEX-3C-mediated MHC-I mRNA degradation, our findings suggest a new non-proteolytic function for ubiquitin in the regulation of mRNA decay.
Assuntos
RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Exorribonucleases , Células HEK293 , Antígeno HLA-A2/genética , Humanos , Proteínas RepressorasRESUMO
Los peces larvívoros han sido estudiados como posibles agentes de control biológico de larvas y pupas de mosquitos a través de sus interacciones tróficas. El uso de peces nativos para el control de mosquitos puede tener beneficios tanto para la biodiversidad acuática como para la salud humana. La evaluación del efecto de la vegetación sobre la eficacia depredadora es fundamental para determinar si esta especie puede usarse como un agente de control biológico. Con el objetivo de evaluar a Jenynsia multidentata (Jenyns, 1842) como agente de biocontrol de Culex pipiens Linnaeus, 1758, probamos su capacidad depredadora en presencia o ausencia de vegetación acuática en condiciones de laboratorio. Se llevaron a cabo dos experimentos independientes. El consumo de larvas a una densidad de 60 larvas (6 larvas / l) se redujo significativamente con el aumento de la vegetación. Por otro lado, cuando la densidad larval fue de 120 (12 larvas / l), la capacidad depredadora de J. multidentata no varía en la presencia o ausencia de vegetación. Este resultado indicó que el efecto de la vegetación en el consumo podría estar relacionado con la densidad de presas, ya que a mayor densidad de presas se podría incrementar la probabilidad de encuentro entre depredador y presa. Jenynsia multidentata es un buen consumidor en presencia de vegetación y podría ser usado como un potencial agente de control biológico de larvas de mosquitos en ambientes naturales con características similares a las probadas en estos experimentos.
Larvivorous fish have been studied as potential biocontrol agents of mosquito larvae and pupae through their trophic interactions. The use of native sh for mosquito control may have benets for both aquatic biodiversity and human health. Evaluating the effect of vegetation on the predatory efficacy is fundamental to determine if this species can be used as a biocontrol agent. With the aim of evaluating Jenynsia multidentata (Jenyns, 1842) as a biocontrol agent of Culex pipiens Linnaeus, 1758, we tested its predatory capacity in the presence or absence of aquatic vegetation under laboratory conditions. Two independent experiments were conducted. Larval consumption at a density of 60 larvae (6 larvae/l) was significantly reduced with the vegetation increased. On the other hand, when the larval density was 120 (12 larvae/l), the predatory capacity of J. multidentata did not vary in the presence or absence of vegetation. This result indicated that vegetation effect on consumption could be related to prey density, since at the higher density of prey the probability of predator-prey encounter might be increased. Jenynsia multidentata is a good consumer in presence of vegetation and could be used as a potential biocontrol agent of mosquito larvae in natural environments with similar characteristics to the ones tested in these experiments.
Assuntos
Animais , Comportamento Predatório , Controle Biológico de Vetores , Larva , Peixes/anatomia & histologia , Peixes/crescimento & desenvolvimentoRESUMO
RESUMEN Los peces larvívoros han sido estudiados como posibles agentes de control biológico de larvas y pupas de mosquitos a través de sus interacciones tróficas. El uso de peces nativos para el control de mosquitos puede tener beneficios tanto para la biodiversidad acuática como para la salud humana. La evaluación del efecto de la vegetación sobre la eficacia depredadora es fundamental para determinar si esta especie puede usarse como un agente de control biológico. Con el objetivo de evaluar a Jenynsia multidentata (Jenyns, 1842) como agente de biocontrol de Culex pipiens Linnaeus, 1758, probamos su capacidad depredadora en presencia o ausencia de vegetación acuática en condiciones de laboratorio. Se llevaron a cabo dos experimentos independientes. El consumo de larvas a una densidad de 60 larvas (6 larvas / l) se redujo significativamente con el aumento de la vegetación. Por otro lado, cuando la densidad larval fue de 120 (12 larvas / l), la capacidad depredadora de J. multidentata no varía en la presencia o ausencia de vegetación. Este resultado indicó que el efecto de la vegetación en el consumo podría estar relacionado con la densidad de presas, ya que a mayor densidad de presas se podría incrementar la probabilidad de encuentro entre depredador y presa. Jenynsia multidentata es un buen consumidor en presencia de vegetación y podría ser usado como un potencial agente de control biológico de larvas de mosquitos en ambientes naturales con características similares a las probadas en estos experimentos.
ABSTRACT Larvivorous fish have been studied as potential biocontrol agents of mosquito larvae and pupae through their trophic interactions. The use of native sh for mosquito control may have benets for both aquatic biodiversity and human health. Evaluating the effect of vegetation on the predatory efficacy is fundamental to determine if this species can be used as a biocontrol agent. With the aim of evaluating Jenynsia multidentata (Jenyns, 1842) as a biocontrol agent of Culex pipiens Linnaeus, 1758, we tested its predatory capacity in the presence or absence of aquatic vegetation under laboratory conditions. Two independent experiments were conducted. Larval consumption at a density of 60 larvae (6 larvae/l) was significantly reduced with the vegetation increased. On the other hand, when the larval density was 120 (12 larvae/l), the predatory capacity of J. multidentata did not vary in the presence or absence of vegetation. This result indicated that vegetation effect on consumption could be related to prey density, since at the higher density of prey the probability of predator-prey encounter might be increased. Jenynsia multidentata is a good consumer in presence of vegetation and could be used as a potential biocontrol agent of mosquito larvae in natural environments with similar characteristics to the ones tested in these experiments.