Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int Microbiol ; 24(1): 37-45, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32705496

RESUMO

Penicillin acylases (penicillin amidohydrolase, EC 3.5.1.11) are a group of enzymes with many applications within the pharmaceutical industry, and one of them is the production of semi-synthetic beta-lactam antibiotics. This enzyme is mainly produced by bacteria but also by some fungi. In the present study, the filamentous fungus Mucor griseocyanus was used to produce penicillin acylase enzyme (PGA). Its ability to express PGA enzyme in submerged fermentation process was assessed, finding that this fungal strain produces the biocatalyst of interest in an extracellular way at a level of 570 IU/L at 72 h of fermentation; in this case, a saline media using lactose as carbon source and penicillin G as inducer was employed. In addition, a DNA fragment (859 bp) of the pga from a pure Mucor griseocyanus strain was amplified, sequenced, and analyzed in silico. The partial sequence of pga identified in the fungi showed high identity percentage with penicillin G acylase sequences deposited in NCBI through BLAST, especially with the ß subunit of PGA from the Alcaligenes faecalis bacterium¸ which is a region involved in the catalytic function of this protein. Besides, the identification of domains in the penicillin G acylase sequence of Mucor griseocyanus showed three conserved regions of this protein. The bioinformatic results support the identity of the gen as penicillin G acylase. This is the first report that involves sequencing and in silico analysis of Mucor griseocyanus strain gene encoding PGA.


Assuntos
Proteínas Fúngicas/metabolismo , Mucor/enzimologia , Penicilina Amidase/genética , Sequência de Aminoácidos , Sequência de Bases , Biocatálise , Fermentação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Mucor/classificação , Mucor/genética , Mucor/metabolismo , Penicilina Amidase/química , Penicilina Amidase/metabolismo , Filogenia , Domínios Proteicos , Alinhamento de Sequência
2.
Curr Pharm Biotechnol ; 21(4): 287-297, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31713475

RESUMO

BACKGROUND: ß-lactam antibiotics are the most used worldwide for the treatment of bacterial infections. The consumption of these classes of drugs is high, and it is increasing around the world. To date, the best way to produce them is using penicillin G Acylase (PGA) as a biocatalyst. OBJECTIVE: This manuscript offers an overview of the most recent advances in the current tools to improve the activity of the PGA and its pharmaceutical application. RESULTS: Several microorganisms produce PGA, but some bacterial strains represent the primary source of this enzyme. The activity of bacterial PGA depends on its adequate expression and carbon or nitrogen source, as well as a specific pH or temperature depending on the nature of the PGA. Additionally, the PGA activity can be enhanced by immobilizing it to a solid support to recycle it for a prolonged time. Likewise, PGAs more stable and with higher activity are obtained from bacterial hosts genetically modified. CONCLUSION: PGA is used to produce b-lactam antibiotics. However, this enzyme has pharmaceutical potential to be used to obtain critical molecules for the synthesis of anti-tumor, antiplatelet, antiemetic, antidepressive, anti-retroviral, antioxidant, and antimutagenic drugs.


Assuntos
Antibacterianos/síntese química , Biotecnologia/métodos , Penicilina Amidase/metabolismo , Tecnologia Farmacêutica/métodos , beta-Lactamas/síntese química , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Positivas/enzimologia , Penicilina Amidase/genética , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA