RESUMO
Genome-wide binding assays aspire to map the complete binding pattern of gene regulators. Common practice relies on replication-duplicates or triplicates-and high stringency statistics to favor false negatives over false positives. Here we show that duplicates and triplicates of CUT&RUN are not sufficient to discover the entire activity of transcriptional regulators. We introduce ICEBERG (Increased Capture of Enrichment By Exhaustive Replicate aGgregation), a pipeline that harnesses large numbers of CUT&RUN replicates to discover the full set of binding events and chart the line between false positives and false negatives. We employed ICEBERG to map the full set of H3K4me3-marked regions, the targets of the co-factor ß-catenin, and those of the transcription factor TBX3, in human colorectal cancer cells. The ICEBERG datasets allow benchmarking of individual replicates, comparing the performance of peak calling and replication approaches, and expose the arbitrary nature of strategies to identify reproducible peaks. Instead of a static view of genomic targets, ICEBERG establishes a spectrum of detection probabilities across the genome for a given factor, underlying the intrinsic dynamicity of its mechanism of action, and permitting to distinguish frequent from rare regulation events. Finally, ICEBERG discovered instances, undetectable with other approaches, that underlie novel mechanisms of colorectal cancer progression.
Assuntos
Software , Transcrição Gênica , Humanos , beta Catenina/metabolismo , beta Catenina/genética , Sítios de Ligação , Linhagem Celular Tumoral , Sequenciamento de Cromatina por Imunoprecipitação , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Genoma Humano , Histonas/metabolismo , Histonas/genética , Ligação Proteica , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genéticaRESUMO
Bcl9 and Pygopus (Pygo) are obligate Wnt/ß-catenin cofactors in Drosophila, yet their contribution to Wnt signaling during vertebrate development remains unresolved. Combining zebrafish and mouse genetics, we document a conserved, ß-catenin-associated function for BCL9 and Pygo proteins during vertebrate heart development. Disrupting the ß-catenin-BCL9-Pygo complex results in a broadly maintained canonical Wnt response yet perturbs heart development and proper expression of key cardiac regulators. Our work highlights BCL9 and Pygo as selective ß-catenin cofactors in a subset of canonical Wnt responses during vertebrate development. Moreover, our results implicate alterations in BCL9 and BCL9L in human congenital heart defects.
Assuntos
Cardiopatias Congênitas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição/genética , Via de Sinalização Wnt , Proteínas de Peixe-Zebra/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Coração/embriologia , Camundongos , Mutação , Miocárdio/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , beta Catenina/metabolismoRESUMO
The forkhead box family transcription factor FOXQ1 is highly induced in several types of carcinomas, where it promotes epithelial-to-mesenchymal transition and tumor metastasis. The molecular mechanisms that lead to FOXQ1 deregulation in cancer are incompletely understood. Here, we used CRISPR-Cas9-based genomic locus proteomics and promoter reporter constructs to discover transcriptional regulators of FOXQ1 and identified the tumor suppressor p53 as a negative regulator of FOXQ1 expression. Chromatin immunoprecipitation followed by quantitative PCR as well as complementary gain and loss-of-function assays in model cell lines indicated that p53 binds close to the transcription start site of the FOXQ1 promoter, and that it suppresses FOXQ1 expression in various cell types. Consistently, pharmacological activation of p53 using nutlin-3 or doxorubicin reduced FOXQ1 mRNA and protein levels in cancer cell lines harboring wildtype p53. Finally, we observed that p53 mutations are associated with increased FOXQ1 expression in human cancers. Altogether, these results suggest that loss of p53 function-a hallmark feature of many types of cancer-derepresses FOXQ1, which in turn promotes tumor progression.
Assuntos
Fatores de Transcrição Forkhead , Regulação Neoplásica da Expressão Gênica , Proteína Supressora de Tumor p53 , Humanos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Regiões Promotoras Genéticas , MutaçãoRESUMO
Upon WNT/ß-catenin pathway activation, stabilized ß-catenin travels to the nucleus where it associates with the TCF/LEF transcription factors, constitutively bound to genomic Wnt-responsive elements (WREs), to activate target gene transcription. Discovering the binding profile of ß-catenin is therefore required to unambiguously assign direct targets of WNT signaling. Cleavage under targets and release using nuclease (CUT&RUN) has emerged as prime technique for mapping the binding profile of DNA-interacting proteins. Here, we present a modified version of CUT&RUN, named LoV-U (low volume and urea), that enables the robust and reproducible generation of ß-catenin binding profiles, uncovering direct WNT/ß-catenin target genes in human cells, as well as in cells isolated from developing mouse tissues. CUT&RUN-LoV-U outperforms original CUT&RUN when targeting co-factors that do not bind the DNA, can profile all classes of chromatin regulators and is well suited for simultaneous processing of several samples. We believe that the application of our protocol will allow the detection of the complex system of tissue-specific WNT/ß-catenin target genes, together with other non-DNA-binding transcriptional regulators that act downstream of ontogenetically fundamental signaling cascades.
Assuntos
Fatores de Transcrição , beta Catenina , Humanos , Camundongos , Animais , beta Catenina/genética , beta Catenina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição TCF/metabolismo , Via de Sinalização Wnt/genética , Endonucleases/metabolismo , Genômica , Ureia , Ativação TranscricionalRESUMO
The forkhead box transcription factor FOXQ1 contributes to the pathogenesis of carcinomas. In colorectal cancers, FOXQ1 promotes tumour metastasis by inducing epithelial-to-mesenchymal transition (EMT) of cancer cells. FOXQ1 may exacerbate cancer by activating the oncogenic Wnt/ß-catenin signalling pathway. However, the role of FOXQ1 in the Wnt pathway remains to be resolved. Here, we report that FOXQ1 is an activator of Wnt-induced transcription and regulator of ß-catenin target gene expression. Upon Wnt pathway activation, FOXQ1 synergises with the ß-catenin nuclear complex to boost the expression of major Wnt targets. In parallel, we find that FOXQ1 controls the differential expression of various Wnt target genes in a ß-catenin-independent manner. Using RNA sequencing of colorectal cancer cell lines, we show that Wnt signalling and FOXQ1 converge on a transcriptional programme linked to EMT and cell migration. Additionally, we demonstrate that FOXQ1 occupies Wnt-responsive elements in ß-catenin target gene promoters and recruits a similar set of co-factors to the ß-catenin-associated transcription factor Tcf7l1. Taken together, our results indicate a multifaceted role of FOXQ1 in Wnt/ß-catenin signalling, which may drive the metastasis of colorectal cancers.
Assuntos
Neoplasias Colorretais , beta Catenina , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismoRESUMO
Early-life stress can result in life-long effects that impact adult health and disease risk, but little is known about how such programming is established and maintained. Here, we show that such epigenetic memories can be initiated in the Drosophila embryo before the major wave of zygotic transcription, and higher-order chromatin structures are established. An early short heat shock results in elevated levels of maternal miRNA and reduced levels of a subgroup of zygotic genes in stage 5 embryos. Using a Dicer-1 mutant, we show that the stress-induced decrease in one of these genes, the insulator-binding factor Elba1, is dependent on functional miRNA biogenesis. Reduction in Elba1 correlates with the upregulation of early developmental genes and promotes a sustained weakening of heterochromatin in the adult fly as indicated by an increased expression of the PEV wm4h reporter. We propose that maternal miRNAs, retained in response to an early embryonic heat shock, shape the subsequent de novo heterochromatin establishment that occurs during early development via direct or indirect regulation of some of the earliest expressed genes, including Elba1.
Assuntos
Proteínas de Drosophila , MicroRNAs , Animais , Drosophila/genética , Drosophila/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Drosophila melanogaster/metabolismoRESUMO
Wnt signaling drives nuclear translocation of ß-catenin and its subsequent association with the DNA-bound TCF/LEF transcription factors, which dictate target gene specificity by recognizing Wnt responsive elements across the genome. ß-Catenin target genes are therefore thought to be collectively activated upon Wnt pathway stimulation. However, this appears in contrast with the non-overlapping patterns of Wnt target gene expression in several contexts, including early mammalian embryogenesis. Here we followed Wnt target gene expression in human embryonic stem cells after Wnt pathway stimulation at a single-cell resolution. Cells changed gene expression program over time consistent with three key developmental events: i) loss of pluripotency, ii) induction of Wnt target genes, and iii) mesoderm specification. Contrary to our expectation, not all cells displayed equal amplitude of Wnt target gene activation; rather, they distributed in a continuum from strong to weak responders when ranked based on the expression of the target AXIN2. Moreover, high AXIN2 did not always correspond to elevated expression of other Wnt targets, which were activated in different proportions in individual cells. The uncoupling of Wnt target gene expression was also identified in single cell transcriptomics profiling of other Wnt-responding cell types, including HEK293T, murine developing forelimbs, and human colorectal cancer. Our finding underlines the necessity to identify additional mechanisms that explain the heterogeneity of the Wnt/ß-catenin-mediated transcriptional outputs in single cells.
Assuntos
Via de Sinalização Wnt , beta Catenina , Camundongos , Humanos , Animais , Via de Sinalização Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo , Células HEK293 , Fatores de Transcrição TCF/metabolismo , Expressão Gênica , Mamíferos/genéticaRESUMO
During malignant progression, epithelial cancer cells dissolve their cell-cell adhesion and gain invasive features. By virtue of its dual function, ß-catenin contributes to cadherin-mediated cell-cell adhesion, and it determines the transcriptional output of Wnt signaling: via its N terminus, it recruits the signaling coactivators Bcl9 and Pygopus, and via the C terminus, it interacts with the general transcriptional machinery. This duality confounds the simple loss-of-function analysis of Wnt signaling in cancer progression. In many cancer types including breast cancer, the functional contribution of ß-catenin's transcriptional activities, as compared to its adhesion functions, to tumor progression has remained elusive. Employing the mouse mammary tumor virus (MMTV)-PyMT mouse model of metastatic breast cancer, we compared the complete elimination of ß-catenin with the specific ablation of its signaling outputs in mammary tumor cells. Notably, the complete lack of ß-catenin resulted in massive apoptosis of mammary tumor cells. In contrast, the loss of ß-catenin's transcriptional activity resulted in a reduction of primary tumor growth, tumor invasion, and metastasis formation in vivo. These phenotypic changes were reflected by stalled cell cycle progression and diminished epithelial-mesenchymal transition (EMT) and cell migration of breast cancer cells in vitro. Transcriptome analysis revealed subsets of genes which were specifically regulated by ß-catenin's transcriptional activities upon stimulation with Wnt3a or during TGF-ß-induced EMT. Our results uncouple the signaling from the adhesion function of ß-catenin and underline the importance of Wnt/ß-catenin-dependent transcription in malignant tumor progression of breast cancer.
Assuntos
Adesão Celular/fisiologia , Neoplasias Mamárias Animais/metabolismo , Transdução de Sinais/fisiologia , Proteína Wnt3A/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Ciclo Celular , Movimento Celular , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Metástase Neoplásica , Transcriptoma , Fator de Crescimento Transformador beta/farmacologia , Proteína Wnt3A/genética , beta Catenina/genéticaRESUMO
During canonical Wnt signalling, the activity of nuclear ß-catenin is largely mediated by the TCF/LEF family of transcription factors. To challenge this view, we used the CRISPR/Cas9 genome editing approach to generate HEK 293T cell clones lacking all four TCF/LEF genes. By performing unbiased whole transcriptome sequencing analysis, we found that a subset of ß-catenin transcriptional targets did not require TCF/LEF factors for their regulation. Consistent with this finding, we observed in a genome-wide analysis that ß-catenin occupied specific genomic regions in the absence of TCF/LEF Finally, we revealed the existence of a transcriptional activity of ß-catenin that specifically appears when TCF/LEF factors are absent, and refer to this as ß-catenin-GHOST response. Collectively, this study uncovers a previously neglected modus operandi of ß-catenin that bypasses the TCF/LEF transcription factors.
Assuntos
Perfilação da Expressão Gênica/métodos , Fatores de Transcrição TCF/genética , Transcrição Gênica , beta Catenina/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fatores de Transcrição TCF/metabolismo , Sequenciamento do Exoma/métodos , Via de Sinalização WntRESUMO
Excessive fear is a hallmark of anxiety disorders, a major cause of disease burden worldwide. Substantial evidence supports a role of prefrontal cortex-amygdala circuits in the regulation of fear and anxiety, but the molecular mechanisms that regulate their activity remain poorly understood. Here, we show that downregulation of the histone methyltransferase PRDM2 in the dorsomedial prefrontal cortex enhances fear expression by modulating fear memory consolidation. We further show that Prdm2 knock-down (KD) in neurons that project from the dorsomedial prefrontal cortex to the basolateral amygdala (dmPFC-BLA) promotes increased fear expression. Prdm2 KD in the dmPFC-BLA circuit also resulted in increased expression of genes involved in synaptogenesis, suggesting that Prdm2 KD modulates consolidation of conditioned fear by modifying synaptic strength at dmPFC-BLA projection targets. Consistent with an enhanced synaptic efficacy, we found that dmPFC Prdm2 KD increased glutamatergic release probability in the BLA and increased the activity of BLA neurons in response to fear-associated cues. Together, our findings provide a new molecular mechanism for excessive fear responses, wherein PRDM2 modulates the dmPFC -BLA circuit through specific transcriptomic changes.
Assuntos
Tonsila do Cerebelo , Complexo Nuclear Basolateral da Amígdala , Tonsila do Cerebelo/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Córtex Pré-Frontal/metabolismo , Medo/fisiologia , Epigênese GenéticaRESUMO
The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.
Assuntos
Células-Tronco Neurais , Proteínas Proto-Oncogênicas c-fos , Fatores de Transcrição SOXB1 , Animais , Proliferação de Células/genética , Autorrenovação Celular/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Células-Tronco Neurais/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Proteína 3 Supressora da Sinalização de Citocinas/genética , Proteína 3 Supressora da Sinalização de Citocinas/metabolismoRESUMO
Bcl9 and Bcl9l (Bcl9/9l) encode Wnt signaling components that mediate the interaction between ß-catenin and Pygopus (Pygo) via two evolutionarily conserved domains, HD1 and HD2, respectively. We generated mouse strains lacking these domains to probe the ß-catenin-dependent and ß-catenin-independent roles of Bcl9/9l and Pygo during mouse development. While lens development is critically dependent on the presence of the HD1 domain, it is not affected by the lack of the HD2 domain, indicating that Bcl9/9l act in this context in a ß-catenin-independent manner. Furthermore, we uncover a new regulatory circuit in which Pax6, the master regulator of eye development, directly activates Bcl9/9l transcription.
Assuntos
Proteínas do Olho/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Cristalino/embriologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Proteínas Repressoras/metabolismo , Animais , Células Cultivadas , Proteínas do Olho/genética , Técnicas de Introdução de Genes , Proteínas de Homeodomínio/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Estrutura Terciária de Proteína/genética , Proteínas Repressoras/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismoRESUMO
The human fetal γ-globin gene is repressed in the adult stage through complex regulatory mechanisms involving transcription factors and epigenetic modifiers. Reversing γ-globin repression, or maintaining its expression by manipulating regulatory mechanisms, has become a major clinical goal in the treatment of ß-hemoglobinopathies. Here, we identify the orphan nuclear receptor Coup-TFII (NR2F2/ARP-1) as an embryonic/fetal stage activator of γ-globin expression. We show that Coup-TFII is expressed in early erythropoiesis of yolk sac origin, together with embryonic/fetal globins. When overexpressed in adult cells (including peripheral blood cells from human healthy donors and ß039 thalassemic patients) Coup-TFII activates the embryonic/fetal globins genes, overcoming the repression imposed by the adult erythroid environment. Conversely, the knock-out of Coup-TFII increases the ß/γ+ß globin ratio. Molecular analysis indicates that Coup-TFII binds in vivo to the ß-locus and contributes to its conformation. Overall, our data identify Coup-TFII as a specific activator of the γ-globin gene.
Assuntos
Receptores Nucleares Órfãos , gama-Globinas , Fator II de Transcrição COUP/genética , Fator II de Transcrição COUP/metabolismo , Proteínas de Transporte/genética , Humanos , Regiões Promotoras Genéticas , gama-Globinas/genéticaRESUMO
Strategies for promoting neural regeneration are hindered by the difficulty of manipulating desired neural fates in the brain without complex genetic methods. The subventricular zone (SVZ) is the largest germinal zone of the forebrain and is responsible for the lifelong generation of interneuron subtypes and oligodendrocytes. Here, we have performed a bioinformatics analysis of the transcriptome of dorsal and lateral SVZ in early postnatal mice, including neural stem cells (NSCs) and their immediate progenies, which generate distinct neural lineages. We identified multiple signaling pathways that trigger distinct downstream transcriptional networks to regulate the diversity of neural cells originating from the SVZ. Next, we used a novel in silico genomic analysis, searchable platform-independent expression database/connectivity map (SPIED/CMAP), to generate a catalogue of small molecules that can be used to manipulate SVZ microdomain-specific lineages. Finally, we demonstrate that compounds identified in this analysis promote the generation of specific cell lineages from NSCs in vivo, during postnatal life and adulthood, as well as in regenerative contexts. This study unravels new strategies for using small bioactive molecules to direct germinal activity in the SVZ, which has therapeutic potential in neurodegenerative diseases.
Assuntos
Linhagem da Célula , Ventrículos Laterais/metabolismo , Transcriptoma , Animais , Simulação por Computador , Bases de Dados Genéticas , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genômica/métodos , Camundongos , Regeneração Nervosa , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Transdução de Sinais , Bibliotecas de Moléculas PequenasRESUMO
Pygopus has been discovered as a fundamental Wnt signaling component in Drosophila. The mouse genome encodes two Pygopus homologs, Pygo1 and Pygo2. They serve as context-dependent ß-catenin coactivators, with Pygo2 playing the more important role. All Pygo proteins share a highly conserved plant homology domain (PHD) that allows them to bind di- and trimethylated lysine 4 of histone H3 (H3K4me2/3). Despite the structural conservation of this domain, the relevance of histone binding for the role of Pygo2 as a Wnt signaling component and as a reader of chromatin modifications remains speculative. Here we generate a knock-in mouse line, homozygous for a Pygo2 mutant defective in chromatin binding. We show that even in the absence of the potentially redundant Pygo1, Pygo2 does not require the H3K4me2/3 binding activity to sustain its function during mouse development. Indeed, during tissue homeostasis, Wnt/ß-catenin-dependent transcription is largely unaffected. However, the Pygo2-chromatin interaction is relevant in testes, where, importantly, Pygo2 binds in vivo to the chromatin in a PHD-dependent manner. Its presence on regulatory regions does not affect the transcription of nearby genes; rather, it is important for the recruitment of the histone acetyltransferase Gcn5 to chromatin, consistent with a testis-specific and Wnt-unrelated role for Pygo2 as a chromatin remodeler.
Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Via de Sinalização Wnt , Animais , Montagem e Desmontagem da Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Feminino , Fertilidade , Técnicas de Introdução de Genes , Genótipo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Domínios e Motivos de Interação entre Proteínas , Testículo/metabolismo , Fatores de Transcrição de p300-CBP/metabolismoRESUMO
The fate of neural progenitor cells (NPCs) is determined by a complex interplay of intrinsic programs and extrinsic signals, very few of which are known. ß-Catenin transduces extracellular Wnt signals, but also maintains adherens junctions integrity. Here, we identify for the first time the contribution of ß-catenin transcriptional activity as opposed to its adhesion role in the development of the cerebral cortex by combining a novel ß-catenin mutant allele with conditional inactivation approaches. Wnt/ß-catenin signaling ablation leads to premature NPC differentiation, but, in addition, to a change in progenitor cell cycle kinetics and an increase in basally dividing progenitors. Interestingly, Wnt/ß-catenin signaling affects the sequential fate switch of progenitors, leading to a shortened neurogenic period with decreased number of both deep and upper-layer neurons and later, to precocious astrogenesis. Indeed, a genome-wide analysis highlighted the premature activation of a corticogenesis differentiation program in the Wnt/ß-catenin signaling-ablated cortex. Thus, ß-catenin signaling controls the expression of a set of genes that appear to act downstream of canonical Wnt signaling to regulate the stage-specific production of appropriate progenitor numbers, neuronal subpopulations, and astroglia in the forebrain.
Assuntos
Córtex Cerebral/citologia , Células-Tronco Neurais/citologia , Neurônios/citologia , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Córtex Cerebral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Transdução de SinaisRESUMO
In the postnatal and adult central nervous system (CNS), the subventricular zone (SVZ) of the forebrain is the main source of neural stem cells (NSCs) that generate olfactory neurons and oligodendrocytes (OLs), the myelinating cells of the CNS. Here, we provide evidence of a primary role for canonical Wnt/ß-catenin signaling in regulating NSC fate along neuronal and oligodendroglial lineages in the postnatal SVZ. Our findings demonstrate that glutamatergic neuronal precursors (NPs) and oligodendrocyte precursors (OPs) are derived strictly from the dorsal SVZ (dSVZ) microdomain under the control of Wnt/ß-catenin, whereas GABAergic NPs are derived mainly from the lateral SVZ (lSVZ) microdomain independent of Wnt/ß-catenin. Transcript analysis of microdissected SVZ microdomains revealed that canonical Wnt/ß-catenin signaling was more pronounced in the dSVZ microdomain. This was confirmed using the ß-catenin-activated Wnt-reporter mouse and by pharmacological stimulation of Wnt/ß-catenin by infusion of the specific glycogen synthase kinase 3ß inhibitor, AR-A014418, which profoundly increased the generation of cycling cells. In vivo genetic/pharmacological stimulation or inhibition of Wnt/ß-catenin, respectively, increased and decreased the differentiation of dSVZ-NSCs into glutamatergic NPs, and had a converse effect on GABAergic NPs. Activation of Wnt/ß-catenin dramatically stimulated the generation of OPs, but its inhibition had no effect, indicating other factors act in concert with Wnt/ß-catenin to fine tune oligodendrogliogenesis in the postnatal dSVZ. These results demonstrate a role for Wnt/ß-catenin signaling within the dorsal microdomain of the postnatal SVZ, in regulating the genesis of glutamatergic neurons and OLs.
Assuntos
Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Proteína Wnt3/metabolismo , beta Catenina/metabolismo , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ventrículos Laterais/citologia , Camundongos Transgênicos , Microscopia Confocal , Células-Tronco Neurais/citologia , Neurônios/citologia , Oligodendroglia/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tiazóis/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Proteína Wnt3/genética , beta Catenina/genéticaRESUMO
Neurite outgrowth inhibitor A (Nogo-A) is a major player in neural development and regeneration and the target of clinical trials aiming at promoting the regeneration of the central nervous system upon traumatic and ischemic injury. In this work, we investigated the functions of Nogo-A during tooth development to determine its role in dental physiology and pathology. Using immunohistochemistry and in situ hybridization techniques, we showed that Nogo-A is highly expressed in the developing mouse teeth and, most specifically, in the ameloblasts that are responsible for the formation of enamel. Using both Nogo-A knockout and K14-Cre;Nogo-A fl/fl transgenic mice, we showed that Nogo-A deletion in the dental epithelium leads to the formation of defective enamel. This phenotype is associated with overexpression of a set of specific genes involved in ameloblast differentiation and enamel matrix production, such as amelogenin, ameloblastin and enamelin. By characterising the interactome of Nogo-A in the dental epithelium of wild-type and mutant animals, we found that Nogo-A directly interacts with molecules important for regulating gene expression, and its deletion disturbs their cellular localisation. Furthermore, we demonstrated that inhibition of the intracellular, but not cell-surface, Nogo-A is responsible for gene expression modulation in ameloblasts. Taken together, these results reveal an unexpected function for Nogo-A in tooth enamel formation by regulating gene expression and cytodifferentiation events.
Assuntos
Ameloblastos , Esmalte Dentário , Proteínas Nogo , Animais , Proteínas Nogo/metabolismo , Camundongos , Ameloblastos/metabolismo , Esmalte Dentário/metabolismo , Camundongos Transgênicos , Hibridização In Situ , Diferenciação Celular , Imuno-Histoquímica , Camundongos Knockout , Amelogênese/fisiologia , Amelogênese/genéticaRESUMO
The identification of regulatory networks contributing to fetal/adult gene expression switches is a major challenge in developmental biology and key to understand the aberrant proliferation of cancer cells, which often reactivate fetal oncogenes. One key example is represented by the developmental gene LIN28B, whose aberrant reactivation in adult tissues promotes tumor initiation and progression. Despite the prominent role of LIN28B in development and cancer, the mechanisms of its transcriptional regulation are largely unknown. Here, by using quantitative RT-PCR and single cell RNA sequencing data, we show that in erythropoiesis the expression of the transcription factor SOX6 matched a sharp decline of LIN28B mRNA during human embryo/fetal to adult globin switching. SOX6 overexpression repressed LIN28B not only in a panel of fetal-like erythroid cells (K562, HEL and HUDEP1; ≈92% p < 0.0001, 54% p = 0.0009 and ≈60% p < 0.0001 reduction, respectively), but also in hepatoblastoma HepG2 and neuroblastoma SH-SY5H cells (≈99% p < 0.0001 and ≈59% p < 0.0001 reduction, respectively). SOX6-mediated repression caused downregulation of the LIN28B/Let-7 targets, including MYC and IGF2BP1, and rapidly blocks cell proliferation. Mechanistically, Lin28B repression is accompanied by SOX6 physical binding within its locus, suggesting a direct mechanism of LIN28B downregulation that might contribute to the fetal/adult erythropoietic transition and restrict cancer proliferation.