Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 19(1): 182, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943064

RESUMO

BACKGROUND: FODMAPs (Fermentable oligosaccharides, disaccharides, monosaccharides, and polyols) intake is associated with the onset of irritable bowel syndrome symptoms. FODMAPs in wheat-derived baked goods may be reduced via bioprocessing by endogenous enzymes and/or microbial fermentation. Because of the inherent enzyme activities, bread made by baker's yeast and sourdough may result in decreased levels of FODMAPs, whose values are, however, not enough low for people sensitive to FODMAPs. RESULTS: Our study investigated the complementary capability of targeted commercial enzymes and metabolically strictly fructophilic lactic acid bacteria (FLAB) to hydrolyze fructans and deplete fructose during wheat dough fermentation. FLAB strains displayed higher fructose consumption rate compared to conventional sourdough lactic acid bacteria. Fructose metabolism by FLAB was faster than glucose. The catabolism of mannitol with the goal of its reuse by FLAB was also investigated. Under sourdough conditions, higher fructans breakdown occurred in FLAB inoculated doughs compared to conventional sourdough bacteria. Preliminary trials allowed selecting Apilactobacillus kunkeei B23I and Fructobacillus fructosus MBIII5 as starter candidates, which were successfully applied in synergy with commercial invertase for low FODMAPs baking. CONCLUSIONS: Results of this study clearly demonstrated the potential of selected strictly FLAB to strongly reduce FODMAPs in wheat dough, especially under liquid-dough and high oxygenation conditions.


Assuntos
Frutanos/metabolismo , Frutose/metabolismo , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/metabolismo , Manitol/metabolismo , Triticum/química , beta-Frutofuranosidase/metabolismo , Pão , Dissacarídeos/metabolismo , Fermentação , Microbiologia de Alimentos , Humanos , Leuconostocaceae/metabolismo , Monossacarídeos/metabolismo , Oligossacarídeos/metabolismo
2.
Crit Rev Microbiol ; 45(1): 65-81, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30663917

RESUMO

Fructophilic lactic acid bacteria (FLAB) are found in fructose-rich habitats associated with flowers, fruits, fermented foods, and the gastrointestinal tract of several insects having a fructose-based diet. FLAB are heterofermentative lactobacilli that prefer fructose instead of glucose as carbon source, although additional electron acceptor substrates (e.g. oxygen) remarkably enhance their growth on glucose. As a newly discovered bacterial group, FLAB are gaining increasing interest. In this review, the ecological context in which these bacteria exist and evolve was resumed. The wide frequency of isolation of FLAB from fructose feeding insects has been deepened to reveal their ecological significance. Genomic, metabolic data, reductive evolution, and niche specialization of the main FLAB species have been discussed. Findings to date acquired are consistent with a metabolic model in which FLAB display a reliance on environmental niches and the degree of host specificity. In light of FLAB proximity to lactic acid bacteria generally considered to be safe, and due to their peculiar metabolic traits, FLAB may be successfully exploited in food and pharmaceutical applications.


Assuntos
Frutose/metabolismo , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/metabolismo , Adaptação Biológica , Animais , Carbono/metabolismo , Evolução Molecular , Flores/microbiologia , Microbiologia de Alimentos , Frutas/microbiologia , Trato Gastrointestinal/microbiologia , Insetos , Lactobacillales/classificação , Lactobacillales/genética
3.
Food Microbiol ; 82: 218-230, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31027777

RESUMO

Structure of lactic acid bacteria biota in ivy flowers, fresh bee-collected pollen (BCP), hive-stored bee bread, and honeybee gastrointestinal tract was investigated. Although a large microbial diversity characterized flowers and fresh BCP, most of lactic acid bacteria species disappeared throughout the bee bread maturation, giving way to Lactobacillus kunkeei and Fructobacillus fructosus to dominate long stored bee bread and honeybee crop. Adaptation of lactic acid bacteria was mainly related to species-specific, and, more in deep, to strain-specific features. Bee bread preservation seemed related to bacteria metabolites, produced especially by some L. kunkeei strains, which likely gave to lactic acid bacteria the capacity to outcompete other microbial groups. A protocol to ferment BCP was successfully set up, which included the mixed inoculum of selected L. kunkeei strains and Hanseniaspora uvarum AN8Y27B, almost emulating the spontaneous fermentation of bee bread. The strict relationship between lactic acid bacteria and yeasts during bee bread maturation was highlighted. The use of the selected starters increased the digestibility and bioavailability of nutrients and bioactive compounds naturally occurring in BCP. Our biotechnological protocol ensured a product microbiologically stable and safe. Conversely, raw BCP was more exposed to the uncontrolled growth of yeasts, moulds, and other bacterial groups.


Assuntos
Abelhas/microbiologia , Microbiologia de Alimentos , Pólen/metabolismo , Pólen/microbiologia , Própole/metabolismo , Animais , Anti-Infecciosos , Fermentação , Flores/microbiologia , Trato Gastrointestinal/microbiologia , Hanseniaspora/metabolismo , Hedera , Lactobacillales/classificação , Lactobacillales/crescimento & desenvolvimento , Lactobacillales/isolamento & purificação , Lactobacillales/metabolismo , Lactobacillus/classificação , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Interações Microbianas , Microbiota , Pólen/química , Especificidade da Espécie
4.
Front Microbiol ; 13: 873432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35516437

RESUMO

Our study proposed date seeds flour (DSF) as an innovative ingredient for sourdough bread production through sustainable bio-recycling. We isolated autochthonous lactic acid bacteria and yeasts from DSF and DSF-derived doughs to build up a reservoir of strains from which to select starters ensuring rapid adaptation and high ecological fitness. The screening based on pro-technological criteria led to the formulation of a mixed starter consisting of Leuconostoc mesenteroides, Lactiplantibacillus plantarum, and Saccharomyces cerevisiae strains, which allowed obtaining a mature type I sourdough after consecutive refreshments, in which an aliquot of the durum wheat flour (DWF) was replaced by DSF. The resulting DSF sourdough and bread underwent an integrated characterization. Sourdough biotechnology was confirmed as a suitable procedure to improve some functional and sensory properties of DWF/DSF mixture formulation. The radical scavenging activity increased due to the consistent release of free phenolics. Perceived bitterness and astringency were considerably diminished, likely because of tannin degradation.

5.
Microb Biotechnol ; 15(8): 2160-2175, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35417624

RESUMO

The alteration of a eubiosis status in honeybees' gut microbiota is directly linked to the occurrence of diseases, and likely to the honeybees decline. Since fructophilic lactobacilli were suggested as symbionts for honeybees, we mechanistically investigated their behaviour under the exposure to agrochemicals (Roundup, Mediator and Reldan containing glyphosate, imidacloprid and chlorpyrifos-methyl as active ingredients respectively) and plant secondary metabolites (nicotine and p-coumaric acid) ingested by honeybees as part of their diet. The effects of exposure to agrochemicals and plant secondary metabolites were assessed both on planktonic cells and sessile communities of three biofilm-forming strains of Apilactobacillus kunkeei. We identified the high sensitivity of A. kunkeei planktonic cells to Roundup and Reldan, while cells embedded in mature biofilms had increased resistance to the same agrochemicals. However, agrochemicals still exerted a substantial inhibitory/control effect if the exposure was during the preliminary steps of biofilm formation. The level of susceptibility resulted to be strain-specific. Exopolysaccharides resulted in the main component of extracellular polymeric matrix (ECM) in biofilm, but the exposure to Roundup caused a change in ECM production and composition. Nicotine and p-coumaric acid had a growth-promoting effect in sessile communities, although no effect was found on planktonic growth.


Assuntos
Agroquímicos , Nicotina , Agroquímicos/metabolismo , Agroquímicos/farmacologia , Animais , Abelhas , Biofilmes , Lactobacillus/metabolismo , Nicotina/metabolismo , Nicotina/farmacologia
6.
Foods ; 10(2)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572637

RESUMO

Bee-collected pollen (BCP) is currently receiving increasing attention as a dietary supplement for humans. In order to increase the accessibility of nutrients for intestinal absorption, several biotechnological solutions have been proposed for BCP processing, with fermentation as one of the most attractive. The present study used an integrated metabolomic approach to investigate how the use of starter cultures may affect the volatilome and the profile of bioaccessible phenolics of fermented BCP. BCP fermented with selected microbial starters (Started-BCP) was compared to spontaneously fermented BCP (Unstarted-BCP) and to unprocessed raw BCP (Raw-BCP). Fermentation significantly increased the amount of volatile compounds (VOC) in both Unstarted- and Started-BCP, as well as modifying the relative proportions among the chemical groups. Volatile free fatty acids were the predominant VOC in Unstarted-BCP. Started-BCP was differentiated by the highest levels of esters and alcohols, although volatile free fatty acids were always prevailing. The profile of the VOC was dependent on the type of fermentation, which was attributable to the selected Apilactobacillus kunkeei and Hanseniaspora uvarum strains used as starters, or to the variety of yeasts and bacteria naturally associated to the BCP. Started-BCP and, to a lesser extent, Unstarted-BCP resulted in increased bioaccessible phenolics, which included microbial derivatives of phenolic acids metabolism.

7.
Int J Food Microbiol ; 323: 108591, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32222654

RESUMO

We carried out a step-by-step accurate procedure to design yeast starters with probiotic and technological traits to ferment cornelian cherry fruits puree (CP). Pichia kudriavzevii DCNa1 and Wickerhamomyces subpelliculosus DFNb6 were selected as binary starters due to their metabolic traits and low ethanol yield. Fermentation by selected starters positively affected the physical stability of CP. Depletion of loganic and cornuside acids during CP fermentation, leads us to speculate that yeasts might be involved in the conversion of iridoids to bioactive derivatives. Compared to unfermented CP, fermentation also affected the profile of CP volatiles, resulting in higher amount of alcohols and esters, and lower levels of aldehydes and alkanes. Viable cell number of selected yeasts in CP after 21 days of storage at 4 °C as well as after in vitro simulated digestion remained above the minimum dose recommended for a probiotic beverage. Under the in vitro gastrointestinal batch simulating the digestion process, we provided original evidence about the ability of yeasts conveyed by fermented CP to modulate the intestinal microbiota. We also faced some issues related to the yeasts physiology and the link between biofilm and cell viability that still deserve to be more in depth investigated.


Assuntos
Bebidas/microbiologia , Cornus , Probióticos , Leveduras/fisiologia , Etanol , Fermentação , Sucos de Frutas e Vegetais/microbiologia , Microbioma Gastrointestinal/fisiologia , Iridoides/metabolismo
8.
Nutrients ; 11(2)2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30678049

RESUMO

P. oleracea L. contains high level of nutrients and biologically active compounds. Recently, lactic fermentation has been proposed as a biotechnological option to enrich the profile of biogenic compounds of Portulaca oleracea L. puree. This study investigated the capability of fermentation by selected lactic acid bacteria to enhance the restoring features of Portulaca oleracea juice towards intestinal inflammation and epithelial injury. Lactic acid fermentation markedly increased the total antioxidant capacity of P. oleracea juice, preserved the inherent levels of vitamins C, A, and E, and increased the bioavailability of the level of vitamin B2 and that of phenolics. The effects of fermented P. oleracea juice on a Caco-2 cell line were investigated using an in vitro model closest to the in vivo conditions. Fermented P. oleracea juice strongly decreased the levels of pro-inflammatory mediators and reactive oxygen species. It also counteracted the disruption of the Caco-2 cell monolayers treated with the inflammatory stimulus. We used a diversified spectrum of lactic acid bacteria species, and some effects appeared to be strains- or species-specific. Fermentation with Lactobacillus kunkeei B7 ensured the best combination for the content of bioactive compounds and the ability to counteract the intestinal inflammation and epithelial injury.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Alimentos Fermentados , Portulaca/química , Bebidas , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Citocinas/análise , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Lactobacillus/metabolismo , Fenóis/análise , Espécies Reativas de Oxigênio/análise , Vitaminas/análise
9.
Front Microbiol ; 10: 2574, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781070

RESUMO

Apple by-products (ABP) underwent fermentation (48 h at 30°C, Fermented-ABP) with a selected binary culture of Weissella cibaria PEP23F and Saccharomyces cerevisiae AN6Y19. Compared to Raw-ABP and Chemically Acidified-ABP (CA-ABP), fermentation markedly increased the hydration properties of ABP. Fermentation led to the highest increases of total and insoluble dietary fibers (DF). Raw-, CA- and Fermented-ABP, at 5 and 10% (w w-1 of flour), were the ingredients for making fortified wheat breads. Addition of ABP and mainly fermentation enhanced dough water absorption and stability, and markedly increased the content of DF. Fortification mainly with 5% of Fermented-ABP did not interfere with bread rheology and color. As shown by profiling volatile compounds, Fermented-ABP imparted agreeable and specific sensory attributes, also appreciated by sensory analysis, and decreased bread hydrolysis index, and delayed mold contamination and firming. Fermented-ABP were suitable ingredients to fortify wheat bread formula, which agreed with bio-economy and environmental sustainability concepts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA