Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nat Methods ; 18(6): 604-617, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34099939

RESUMO

Single-cell profiling methods have had a profound impact on the understanding of cellular heterogeneity. While genomes and transcriptomes can be explored at the single-cell level, single-cell profiling of proteomes is not yet established. Here we describe new single-molecule protein sequencing and identification technologies alongside innovations in mass spectrometry that will eventually enable broad sequence coverage in single-cell profiling. These technologies will in turn facilitate biological discovery and open new avenues for ultrasensitive disease diagnostics.


Assuntos
Análise de Sequência de Proteína/métodos , Imagem Individual de Molécula/métodos , Espectrometria de Massas/métodos , Nanotecnologia , Proteínas/química , Proteômica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
2.
Angew Chem Int Ed Engl ; 62(27): e202302805, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961368

RESUMO

One of the key challenges of improving clinical outcomes of antibody drug conjugates (ADCs) is overcoming cancer resistance to the antibody and/or drug components of ADCs, and hence the need for ADC platforms with high combinatory flexibility. Here, we introduce the use of self-assembled left-handed DNA (L-DNA) oligonucleotides to link combinatory single-domain antibodies and toxin payloads for tunable and adaptive delivery of ADCs. We demonstrate that the method allows convenient construction of a library of ADCs with multi-specific targeting, multi-specific payloads, and exact drug-antibody ratio. The newly constructed ADCs with L-DNA scaffold showed favorable properties of in vitro cell cytotoxicity and in vivo suppression and eradication of solid tumors. Collectively, our data suggest that the L-DNA based modular ADC (MADC) platform is a viable option for generating therapeutic ADCs and for potentially expanding ADC therapeutic window via multi-specificity.


Assuntos
Antineoplásicos , Imunoconjugados , Neoplasias , Humanos , Anticorpos , DNA , Antineoplásicos/farmacologia
3.
Q Rev Biophys ; 53: e12, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33148356

RESUMO

In neurodegenerative diseases, a wide range of amyloid proteins or peptides such as amyloid-beta and α-synuclein fail to keep native functional conformations, followed by misfolding and self-assembling into a diverse array of aggregates. The aggregates further exert toxicity leading to the dysfunction, degeneration and loss of cells in the affected organs. Due to the disordered structure of the amyloid proteins, endogenous molecules, such as lipids, are prone to interact with amyloid proteins at a low concentration and influence amyloid cytotoxicity. The heterogeneity of amyloid proteinscomplicates the understanding of the amyloid cytotoxicity when relying only on conventional bulk and ensemble techniques. As complementary tools, single-molecule techniques (SMTs) provide novel insights into the different subpopulations of a heterogeneous amyloid mixture as well as the cytotoxicity, in particular as involved in lipid membranes. This review focuses on the recent advances of a series of SMTs, including single-molecule fluorescence imaging, single-molecule force spectroscopy and single-nanopore electrical recording, for the understanding of the amyloid molecular mechanism. The working principles, benefits and limitations of each technique are discussed and compared in amyloid protein related studies.. We also discuss why SMTs show great potential and are worthy of further investigation with feasibility studies as diagnostic tools of neurodegenerative diseases and which limitations are to be addressed.


Assuntos
Proteínas Amiloidogênicas/química , Amiloidose/diagnóstico , Doenças Neurodegenerativas/diagnóstico , Imagem Individual de Molécula , Animais , Biomarcadores/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Microscopia de Força Atômica , Microscopia de Fluorescência , Nanoporos , Nanotecnologia , Óptica e Fotônica , Desnaturação Proteica , Dobramento de Proteína
4.
Nature ; 533(7602): 269-73, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27135929

RESUMO

Mitochondria from many eukaryotic clades take up large amounts of calcium (Ca(2+)) via an inner membrane transporter called the uniporter. Transport by the uniporter is membrane potential dependent and sensitive to ruthenium red or its derivative Ru360 (ref. 1). Electrophysiological studies have shown that the uniporter is an ion channel with remarkably high conductance and selectivity. Ca(2+) entry into mitochondria is also known to activate the tricarboxylic acid cycle and seems to be crucial for matching the production of ATP in mitochondria with its cytosolic demand. Mitochondrial calcium uniporter (MCU) is the pore-forming and Ca(2+)-conducting subunit of the uniporter holocomplex, but its primary sequence does not resemble any calcium channel studied to date. Here we report the structure of the pore domain of MCU from Caenorhabditis elegans, determined using nuclear magnetic resonance (NMR) and electron microscopy (EM). MCU is a homo-oligomer in which the second transmembrane helix forms a hydrophilic pore across the membrane. The channel assembly represents a new solution of ion channel architecture, and is stabilized by a coiled-coil motif protruding into the mitochondrial matrix. The critical DXXE motif forms the pore entrance, which features two carboxylate rings; based on the ring dimensions and functional mutagenesis, these rings appear to form the selectivity filter. To our knowledge, this is one of the largest membrane protein structures characterized by NMR, and provides a structural blueprint for understanding the function of this channel.


Assuntos
Caenorhabditis elegans/química , Canais de Cálcio/química , Motivos de Aminoácidos , Animais , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Microscopia Eletrônica , Mitocôndrias/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
5.
Proc Natl Acad Sci U S A ; 114(14): E2846-E2851, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28325874

RESUMO

The calcium (Ca2+) uniporter of mitochondria is a holocomplex consisting of the Ca2+-conducting channel, known as mitochondrial calcium uniporter (MCU), and several accessory and regulatory components. A previous electrophysiology study found that the uniporter has high Ca2+ selectivity and conductance and this depends critically on the conserved amino acid sequence motif, DXXE (Asp-X-X-Glu) of MCU. A recent NMR structure of the MCU channel from Caenorhabditis elegans revealed that the DXXE forms two parallel carboxylate rings at the channel entrance that seem to serve as the ion selectivity filter, although direct ion interaction of this structural motif has not been addressed. Here, we use a paramagnetic probe, manganese (Mn2+), to investigate ion and inhibitor binding of this putative selectivity filter. Our paramagnetic NMR data show that mutants with a single carboxylate ring, NXXE (Asn-X-X-Glu) and DXXQ (Asp-X-X-Gln), each can bind Mn2+ specifically, whereas in the WT the two rings bind Mn2+ cooperatively, resulting in ∼1,000-fold higher apparent affinity. Ca2+ can specifically displace the bound Mn2+ at the DXXE site in the channel. Furthermore, titrating the sample with the known channel inhibitor ruthenium 360 (Ru360) can displace Mn2+ binding from the solvent-accessible Asp site but not the inner Glu site. The NMR titration data, together with structural analysis of the DXXE motif and molecular dynamics simulation, indicate that the double carboxylate rings at the apex of the MCU pore constitute the ion selectivity filter and that Ru360 directly blocks ion entry into the filter by binding to the outer carboxylate ring.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Manganês/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Espectroscopia de Ressonância Magnética , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/genética , Simulação de Dinâmica Molecular , Mutação , Compostos de Rutênio/metabolismo , Compostos de Rutênio/farmacologia
6.
Acc Chem Res ; 51(2): 331-341, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29364650

RESUMO

Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis, we develop an integrated current measurement system and an accurate data processing method for nanopore sensing. The unique geometric structure of a biological nanopore offers a distinct advantage as a nanosensor for single-molecule sensing. The construction of the pore entrance is responsible for capturing the target molecule, while the lumen region determines the translocation process of the single molecule. Since the capture of the target molecule is predominantly diffusion-limited, it is expected that the capture ability of the nanopore toward the target analyte could be effectively enhanced by site-directed mutations of key amino acids with desirable groups. Additionally, changing the side chains inside the wall of the biological nanopore could optimize the geometry of the pore and realize an optimal interaction between the single-molecule interface and the analyte. These improvements would allow for high spatial and current resolution of nanopore sensors, which would ensure the possibility of dynamic study of single biomolecules, including their metastable conformations, charge distributions, and interactions. In the future, data analysis with powerful algorithms will make it possible to automatically and statistically extract detailed information while an analyte translocates through the pore. We conclude that these improvements could have tremendous potential applications for nanopore sensing in the near future.

7.
Anal Chem ; 90(7): 4268-4272, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29516718

RESUMO

Identification of the configuration for the photoresponsive oligonucleotide plays an important role in the ingenious design of DNA nanomolecules and nanodevices. Due to the limited resolution and sensitivity of present methods, it remains a challenge to determine the accurate configuration of photoresponsive oligonucleotides, much less a precise description of their photoconversion process. Here, we used an aerolysin (AeL) nanopore-based confined space for real-time determination and quantification of the absolute cis/ trans configuration of each azobenzene-modified oligonucleotide (Azo-ODN) with a single molecule resolution. The two completely separated current distributions with narrow peak widths at half height (<0.62 pA) are assigned to cis/ trans-Azo-ODN isomers, respectively. Due to the high current sensitivity, each isomer of Azo-ODN could be undoubtedly identified, which gives the accurate photostationary conversion values of 82.7% for trans-to- cis under UV irradiation and 82.5% for cis-to- trans under vis irradiation. Further real-time kinetic evaluation reveals that the photoresponsive rate constants of Azo-ODN from trans-to- cis and cis-to -trans are 0.43 and 0.20 min-1, respectively. This study will promote the sophisticated design of photoresponsive ODN to achieve an efficient and applicable photocontrollable process.


Assuntos
Toxinas Bacterianas/química , Nanoporos , Oligonucleotídeos/análise , Proteínas Citotóxicas Formadoras de Poros/química , Processos Fotoquímicos , Estereoisomerismo , Fatores de Tempo
8.
Anal Chem ; 90(13): 7790-7794, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29882404

RESUMO

The aerolysin nanopore channel is one of the confined spaces for single molecule analysis which displays high spatial and temporal resolution for the discrimination of single nucleotides, identification of DNA base modification, and analyzing the structural transition of DNAs. However, to overcome the challenge of achieving the ultimate goal of the widespread real analytical application, it is urgent to probe the sensing regions of the aerolysin to further improve the sensitivity. In this paper, we explore the sensing regions of the aerolysin nanopore by a series of well-designed mutant nanopore experiments combined with molecular dynamics simulations-based electrostatic analysis. The positively charged lumen-exposed Lys-238, identified as one of the key sensing sites due to the presence of a deep valley in the electrostatic potentials, was replaced by different charged and sized amino acids. The results show that the translocation time of oligonucleotides through the nanopore can be readily modulated by the choice of the target amino acid at the 238 site. In particular, a 7-fold slower translocation at a voltage bias of +120 mV is observed with respect to the wild-type aerolysin, which provides a high resolution for methylated cytosine discrimination. We further determine that both the electrostatic properties and geometrical structure of the aerolysin nanopore are crucial to its sensing ability. These insights open ways for rationally designing the sensing mechanism of the aerolysin nanopore, thus providing a novel paradigm for nanopore sensing.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Nanoporos , Oligonucleotídeos/metabolismo , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Citosina/metabolismo , Metilação , Simulação de Dinâmica Molecular , Conformação Proteica
9.
Small ; 14(18): e1704520, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29603609

RESUMO

An aerolysin nanopore is employed as a sensitive tool for single-molecule analysis of short oligonucleotides (≤10 nucleotides), poly(ethylene glycol) (PEGs), peptides, and proteins. However, the direct analysis of long oligonucleotides with the secondary structure (e.g., G-quadruplex topology) remains a challenge, which impedes the further practical applications of the aerolysin nanopore. Here, a simple and applicable method of aerolysin nanopore is presented to achieve a direct analysis of structured oligonucleotides that are extended to 30 nucleotides long by a cation-regulation mechanism. By regulating the cation type in electrolyte solution, the structured oligonucleotides are unfolded into linear form which ensures the successive translocation. The results show that each model oligonucleotide of 5'-(TTAGGG)n -3' can produce a well-resolved current blockade in its unfolded solution of MgCl2 . The length between 6 and 30 nucleotides long of model oligonucleotides is proportional to the duration time, showing a translocation velocity as low as 0.70-0.13 ms nt-1 at +140 mV. This method exhibits an excellent sensitivity and a sufficient temporal resolution, provides insight into the aerolysin nanopore methodology for genetic and epigenetic biosensing, making aerolysin applicable in practical diagnosing with long and structured nucleic acids.


Assuntos
Nanoporos , Oligonucleotídeos/química , Técnicas Biossensoriais/métodos , Nanotecnologia/métodos , Polietilenoglicóis/química
10.
Anal Chem ; 89(21): 11685-11689, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28988479

RESUMO

Detection of DNA methylation in real human serum is of great importance to push the development of clinical research and early diagnosis of human diseases. Herein, taking advantage of stable pore structure of aerolysin in a harsh environment, we distinguish methylated cytosine from cytosine using aerolysin nanopore in human serum. Since wild-type (WT) aerolysin enables high sensitivity detection of DNA, the subtle difference between methylated cytosine and cytosine could be measured directly without any specific designs. Methylated cytosine induced a population of I/I0 = 0.53 while cytosine was focused on I/I0 = 0.56. The dwell time of methylated cytosine (5.3 ± 0.1 ms) was much longer than that of cytosine (3.9 ± 0.1 ms), which improves the accuracy for the discrimination of the two oligomers. Moreover, the pore-membrane system could remain stable for more than 2 h and achieve the detection of methylated cytosine with zero-background signal in the presence of serum. Additionally, event frequency of methylated cytosine is in correspondence with the relative concentration and facilitate the quantification of methylation.


Assuntos
5-Metilcitosina/sangue , Toxinas Bacterianas/química , Análise Química do Sangue/métodos , Limite de Detecção , Nanoporos , Proteínas Citotóxicas Formadoras de Poros/química , 5-Metilcitosina/metabolismo , Humanos , Metilação , Modelos Moleculares , Conformação Proteica
11.
Small ; 13(44)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29024329

RESUMO

Direct, low-cost, label-free, and enzyme-free identification of single nucleobase is a great challenge for genomic studies. Here, this study reports that wild-type aerolysin can directly identify the difference of four types of single nucleobase (adenine, thymine, cytosine, and guanine) in a free DNA oligomer while avoiding the operations of additional DNA immobilization, adapter incorporation, and the use of the processing enzyme. The nanoconfined space of aerolysin enables DNA molecules to be limited in the narrow pore. Moreover, aerolysin exhibits an unexpected capability of detecting DNA oligomers at the femtomolar concentration. In the future, by virtue of the high sensitivity of aerolysin and its high capture ability for DNA oligomers, aerolysin will play an important role in the studies of single nucleobase variations and open up new avenues for a broad range of nucleic-acid-based sensing and disease diagnosis.


Assuntos
Oligonucleotídeos/química , Toxinas Bacterianas/química , DNA/química , Proteínas Citotóxicas Formadoras de Poros/química
12.
Anal Chem ; 88(10): 5046-9, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27120503

RESUMO

Aerolysin has been used as a biological nanopore for studying peptides, proteins, and oligosaccharides in the past two decades. Here, we report that wild-type aerolysin could be utilized for polynucleotide analysis. Driven a short polynucleotide of four nucleotides length through aerolysin occludes nearly 50% amplitude of the open pore current. Furthermore, the result of total internal reflection fluorescence measurement provides direct evidence for the driven translocation of single polynucleotide through aerolysin.


Assuntos
Toxinas Bacterianas/química , DNA de Cadeia Simples/análise , Polinucleotídeos/análise , Proteínas Citotóxicas Formadoras de Poros/química , DNA de Cadeia Simples/química , Técnicas Eletroquímicas , Fluoresceínas/química , Fluorescência , Corantes Fluorescentes/química , Polinucleotídeos/química , Proteínas Citotóxicas Formadoras de Poros/ultraestrutura
13.
Angew Chem Int Ed Engl ; 55(44): 13744-13748, 2016 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-27701815

RESUMO

Enzyme catalysis relies on conformational plasticity, but structural information on transient intermediates is difficult to obtain. We show that the three-dimensional (3D) structure of an unstable, low-abundance enzymatic intermediate can be determined by nuclear magnetic resonance (NMR) spectroscopy. The approach is demonstrated for Staphylococcus aureus sortase A (SrtA), which is an established drug target and biotechnological reagent. SrtA is a transpeptidase that converts an amide bond of a substrate peptide into a thioester. By measuring pseudocontact shifts (PCSs) generated by a site-specific cysteine-reactive paramagnetic tag that does not react with the active-site residue Cys184, a sufficient number of restraints were collected to determine the 3D structure of the unstable thioester intermediate of SrtA that is present only as a minor species under non-equilibrium conditions. The 3D structure reveals structural changes that protect the thioester intermediate against hydrolysis.


Assuntos
Aminoaciltransferases/química , Proteínas de Bactérias/química , Cisteína Endopeptidases/química , Ressonância Magnética Nuclear Biomolecular , Staphylococcus aureus/enzimologia , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
14.
Anal Chem ; 87(2): 907-13, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25514172

RESUMO

Data analysis for nanopore experiments remains a fundamental and technological challenge because of the large data volume, the presence of unavoidable noise, and the filtering effect. Here, we present an accurate and robust data process that recognizes the current blockades and enables evaluation of the dwell time and current amplitude through a novel second-order-differential-based calibration method and an integration method, respectively. We applied the developed data process to analyze both generated blockages and experimental data. Compared to the results obtained using the conventional method, those obtained using the new method provided a significant increase in the accuracy of nanopore measurements.


Assuntos
Peptídeos beta-Amiloides/química , DNA de Cadeia Simples/química , Interpretação Estatística de Dados , Processamento Eletrônico de Dados , Proteínas Hemolisinas/química , Nanoporos , Nanotecnologia/métodos , Técnicas Biossensoriais/métodos , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier
15.
J Biomol NMR ; 59(4): 251-61, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25002097

RESUMO

The side-chain amide groups of asparagine and glutamine play important roles in stabilizing the structural fold of proteins, participating in hydrogen-bonding networks and protein interactions. Selective (15)N-labeling of side-chain amides, however, can be a challenge due to enzyme-catalyzed exchange of amide groups during protein synthesis. In the present study, we developed an efficient way of selectively labeling the side chains of asparagine, or asparagine and glutamine residues with (15)NH2. Using the biosynthesis pathway of tryptophan, a protocol was also established for simultaneous selective (15)N-labeling of the side-chain NH groups of asparagine, glutamine, and tryptophan. In combination with site-specific tagging of the target protein with a lanthanide ion, we show that selective detection of (15)N-labeled side-chains of asparagine and glutamine allows determination of magnetic susceptibility anisotropy tensors based exclusively on pseudocontact shifts of amide side-chain protons.


Assuntos
Asparagina/química , Proteínas de Escherichia coli/química , Glutamina/química , Marcação por Isótopo/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Asparagina/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glutamina/metabolismo , Isótopos de Nitrogênio/química
16.
Anal Chem ; 86(24): 11946-50, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25457124

RESUMO

A design with conjugation of DNA hairpin structure to the poly(ethylene glycol) molecule was presented to enhance the temporal resolution of low molecular weight poly(ethylene glycol) in nanopore studies. By the virtue of this design, detection of an individual PEG with molecular weight as low as 140 Da was achieved at the single-molecule level in solution, which provides a novel strategy for characterization of an individual small molecule within a nanopore. Furthermore, we found that the current duration time of poly(ethylene glycol) was scaled with the relative molecular weight, which has a potential application in single-molecule detection.


Assuntos
Nanoporos , Polietilenoglicóis/química , Modelos Biológicos , Peso Molecular
17.
Analyst ; 139(16): 3826-35, 2014 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-24991734

RESUMO

Nanopore sensors provide a highly innovative technique for a rapid and label-free single molecule analysis, which holds a great potential in routing applications. Biological nanopores have been used as ultra-sensitive sensors over a wide range of single molecule analysis including DNA sequencing, disease diagnosis, drug screening, environment monitoring and the construction of molecule machines. This mini review will focus on the current strategies for the identification and characterization of an individual analyte, especially based on our recent achievements in biological nanopore biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Nanoporos , Animais , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/instrumentação , Humanos , Modelos Moleculares , Nanoporos/ultraestrutura
18.
ChemMedChem ; : e202400109, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758596

RESUMO

Antibody-drug conjugates (ADCs) consist of antibodies, linkers and payloads. They offer targeted delivery of potent cytotoxic drugs to tumor cells, minimizing off-target effects. However, the therapeutic efficacy of ADCs is compromised by heterogeneity in the drug-to-antibody ratio (DAR), which impacts both cytotoxicity and pharmacokinetics (PK). Additionally, the emergence of drug resistance poses significant challenges to the clinical advancement of ADCs. To overcome these limitations, a variety of strategies have been developed, including the design of multi-specific drugs with accurate DAR. This review critically summarizes the current challenges faced by ADCs, categorizing key issues and evaluating various innovative solutions. We provide an in-depth analysis of the latest methodologies for achieving homogeneous DAR and explore design strategies for multi-specific drugs aimed at combating drug resistance. Our discussion offers a current perspective on the advancements made in refining ADC technologies, with an emphasis on enhancing therapeutic outcomes.

19.
J Chem Theory Comput ; 20(3): 1157-1168, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38279919

RESUMO

Recently, a hybrid density functional valence bond (VB) method, λ-DFVB(U), has been proposed and shown to give accuracy that is comparable to that of CASPT2 in calculations of atomization energies, atomic excitation energies, and reaction barriers, while its computational cost is approximately the same as the valence bond self-consistent-field (VBSCF) method. However, the interaction between electronic states is not included in λ-DFVB(U) since the last step of λ-DFVB(U) is not a diagonalization of the Hamiltonian matrix on the electronic state basis. Therefore, λ-DFVB(U) gives the wrong topology of the potential energy surfaces (PESs) near the conical intersection region. In the present paper, we propose a novel hybrid density functional VB method with multistate treatment, named λ-DFVB(MS), in which an effective Hamiltonian matrix is constructed on the basis of the diabatic states obtained by the valence-bond-based compression approach for the diabatization scheme, and the interaction between electronic states can be included through the diagonalization of the effective Hamiltonian matrix. Test calculations show that λ-DFVB(MS) gives the correct topology of the PESs near the conical intersection region. We also show that the VBSCF wave function with selected VB structures can be applied as a reference in λ-DFVB(MS).

20.
Medicine (Baltimore) ; 103(21): e38254, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38788021

RESUMO

Cerebral collateral circulation (CC) is associated with the recurrence and severity of acute ischemic stroke (AIS), and early identification of poor CC is helpful for the prevention of AIS. In this study we evaluated the association between serum albumin levels and CC in AIS using logistic regression. Propensity score (PS) matching was used to eliminate the effect of confounders, and restricted cubic splines (RCS) were employed to explore potential nonlinear associations between albumin and CC. In unadjusted logistic regression analysis, lower albumin (OR = 0.85, 95% CI = 0.79-0.92) was associated with poor CC, and after adjusting for covariates, the odds of lower albumin for poor CC compared to good CC were 0.86 (95% CI = 0.79-0.94). In the PS cohort, the association of albumin with CC was consistent with those of the original cohort. RCS results showed a linear relationship between albumin and CC (P values of .006 and .08 for overall and nonlinear associations, respectively). The results of this study suggest that lower serum albumin is independently associated with an increased risk of poor CC, which may serve as an effective predictive indicator for poor CC in patients with severe intracranial atherosclerotic stenosis.


Assuntos
Circulação Colateral , AVC Isquêmico , Pontuação de Propensão , Albumina Sérica , Humanos , Masculino , Circulação Colateral/fisiologia , Feminino , AVC Isquêmico/sangue , AVC Isquêmico/fisiopatologia , AVC Isquêmico/etiologia , Pessoa de Meia-Idade , Idoso , Albumina Sérica/análise , Circulação Cerebrovascular/fisiologia , Arteriosclerose Intracraniana/sangue , Arteriosclerose Intracraniana/fisiopatologia , Arteriosclerose Intracraniana/complicações , Estudos Retrospectivos , Modelos Logísticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA