Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(9)2023 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-37175435

RESUMO

Despite the many strategies employed to slow the spread of cancer, the development of new anti-tumor drugs and the minimization of side effects have been major research hotspots in the anti-tumor field. Natural drugs are a huge treasure trove of drug development, and they have been widely used in the clinic as anti-tumor drugs. Selaginella species in the family Selaginellaceae are widely distributed worldwide, and they have been well-documented in clinical practice for the prevention and treatment of cancer. Biflavonoids are the main active ingredients in Selaginella, and they have good biological and anti-tumor activities, which warrant extensive research. The promise of biflavonoids from Selaginella (SFB) in the field of cancer therapy is being realized thanks to new research that offers insights into the multi-targeting therapeutic mechanisms and key signaling pathways. The pharmacological effects of SFB against various cancers in vitro and in vivo are reviewed in this review. In addition, the types and characteristics of biflavonoid structures are described in detail; we also provide a brief summary of the efforts to develop drug delivery systems or combinations to enhance the bioavailability of SFB monomers. In conclusion, SFB species have great potential to be developed as adjuvant or even primary therapeutic agents for cancer, with promising applications.


Assuntos
Antineoplásicos , Biflavonoides , Selaginellaceae , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Biflavonoides/química , Extratos Vegetais/farmacologia , Selaginellaceae/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Disponibilidade Biológica
2.
Int J Med Mushrooms ; 26(4): 41-51, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523448

RESUMO

Liquid fermentation could yield substantial mycelia mass and valuable secondary metabolites in large-scale production within a short, fermented duration. The liquid fermented process of mycelia of Poria cocos was optimized using a combination of single-factor experimentation and response surface methodology (RSM) to obtain more extract of P. cocos. The optimal conditions were determined as follows: The carbon source concentration at 1%, the nitrogen source concentration at 1%, the inoculum volume at 7% and a culture time of 9 d. Under these conditions, the ethyl acetate extract mass of P. cocos mycelia reached 0.0577 ± 0.0041 mg. There were significant interactions between nitrogen source concentration and cultivation time. The predicted values by the mathematical model based on the response surface analysis showed a close agreement with experimental data.


Assuntos
Wolfiporia , Fermentação , Wolfiporia/metabolismo , Micélio , Nitrogênio/metabolismo
3.
Front Microbiol ; 14: 1168386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213499

RESUMO

Background: The antibiotic resistance in various bacteria is consistently increasing and is posing a serious threat to human health, prompting the need for the discovery of novel structurally featured natural products with promising biological activities in drug research and development. Endolichenic microbes have been proven to be a fertile source to produce various chemical components, and therefore these microbes have been on a prime focus for exploring natural products. In this study, to explore potential biological resources and antibacterial natural products, the secondary metabolites of an endolichenic fungus have been investigated. Methods: The antimicrobial products were isolated from the endolichenic fungus using various chromatographic methods, and the antibacterial and antifungal activities of the compounds were evaluated by the broth microdilution method under in vitro conditions. The antimicrobial mechanism has been discussed with measuring the dissolution of nucleic acid and protein, as well as the activity of alkaline phosphatase (AKP) in preliminary manner. Chemical synthesis of the active product compound 5 was also performed, starting from commercially available 2,6-dihydroxybenzaldehyde through a sequence of transformations that included methylation, the addition of propylmagnesium bromide on formyl group, the oxidation of secondary alcohol, and the deprotection of methyl ether motif. Results: Among the 19 secondary metabolites of the endolichenic fungus, Daldinia childiae (compound 5) showed attractive antimicrobial activities on 10 of the 15 tested pathogenic strains, including Gram-positive bacteria, Gram-negative bacteria, and fungus. The Minimum Inhibitory Concentration (MIC) of compound 5 for Candida albicans 10213, Micrococcus luteus 261, Proteus vulgaris Z12, Shigella sonnet, and Staphylococcus aureus 6538 was identified as 16 µg/ml, whereas the Minimum Bactericidal Concentration (MBC) of other strains was identified as 64 µg/ml. Compound 5 could dramatically inhibit the growth of S. aureus 6538, P. vulgaris Z12, and C. albicans 10213 at the MBC, likely affecting the permeability of the cell wall and cell membrane. These results enriched the library of active strains and metabolites resources of endolichenic microorganisms. The chemical synthesis of the active compound was also performed in four steps, providing an alternative pathway to explore antimicrobial agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA