Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(15): e202400414, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38348904

RESUMO

Bipolar membranes (BPMs) have emerged as a promising solution for mitigating CO2 losses, salt precipitation and high maintenance costs associated with the commonly used anion-exchange membrane electrode assembly for CO2 reduction reaction (CO2RR). However, the industrial implementation of BPM-based zero-gap electrolyzer is hampered by the poor CO2RR performance, largely attributed to the local acidic environment. Here, we report a backbone engineering strategy to improve the CO2RR performance of molecular catalysts in BPM-based zero-gap electrolyzers by covalently grafting cobalt tetraaminophthalocyanine onto a positively charged polyfluorene backbone (PF-CoTAPc). PF-CoTAPc shows a high acid tolerance in BPM electrode assembly (BPMEA), achieving a high FE of 82.6 % for CO at 100 mA/cm2 and a high CO2 utilization efficiency of 87.8 %. Notably, the CO2RR selectivity, carbon utilization efficiency and long-term stability of PF-CoTAPc in BPMEA outperform reported BPM systems. We attribute the enhancement to the stable cationic shield in the double layer and suppression of proton migration, ultimately inhibiting the undesired hydrogen evolution and improving the CO2RR selectivity. Techno-economic analysis shows the least energy consumption (957 kJ/mol) for the PF-CoTAPc catalyst in BPMEA. Our findings provide a viable strategy for designing efficient CO2RR catalysts in acidic environments.

2.
Small ; 18(24): e2201311, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35561067

RESUMO

Deficiencies in understanding the local environment of active sites and limited synthetic skills challenge the delivery of industrially-relevant current densities with low overpotentials and high selectivity for CO2 reduction. Here, a transient laser induction of metal salts can stimulate extreme conditions and rapid kinetics to produce defect-rich indium nanoparticles (L-In) is reported. Atomic-resolution microscopy and X-ray absorption disclose the highly defective and undercoordinated local environment in L-In. In a flow cell, L-In shows a very small onset overpotential of ≈92 mV and delivers a current density of ≈360 mA cm-2 with a formate Faradaic efficiency of 98% at a low potential of -0.62 V versus RHE. The formation rate of formate reaches up to 6364.4 µmol h-1mgIn-1$mg_{{\rm{In}}}^{--1}$ , which is nearly 39 folds higher than that of commercial In (160.7 µmol h-1mgIn-1$mg_{{\rm{In}}}^{--1}$ ), outperforming most of the previous results that have been reported under KHCO3 environments. Density function theory calculations suggest that the defects facilitate the formation of *OCHO intermediate and stabilize the *HCOOH while inhibiting hydrogen adsorption. This study suggests that transient solid-state laser induction provides a facile and cost-effective approach to form ligand-free and defect-rich materials with tailored activities.


Assuntos
Índio , Lasers de Estado Sólido , Dióxido de Carbono/química , Formiatos/química
3.
J Cardiovasc Pharmacol ; 77(5): 586-593, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33951695

RESUMO

ABSTRACT: As a biomarker for heart failure, miR-129-5p is abnormally expressed during myocardial I/R, but its specific functions and mechanisms remain largely unclear. Thus, this study explored the roles and possible mechanisms of miR-129-5p in hypoxia/reoxygenation (H/R)-insulted H9c2 cardiac myoblasts. After H/R insult, miR-129-5p expression levels were decreased, along with reduced cell viability and enhanced lactate dehydrogenase release in H9c2 cells. Overexpression of miR-129-5p through transfection of miR-129-5p mimics effectively improved cell viability and reduced lactate dehydrogenase release in H9c2 cells exposed to H/R, along with decreased apoptosis and caspase-3 activities. Moreover, miR-129-5p mimics inhibited reactive oxygen species production and upsurged superoxide dismutase activity in H9c2 cells exposed to H/R, and suppressed H/R-caused massive release of proinflammatory cytokines TNF-α and IL-1ß. TRPM7 was identified as the target of miR-129-5p and was negatively regulated by miR-129-5p. TRPM7 overexpression counteracted the antagonistic effect of miR-129-5p on H/R-induced increase in intracellular calcium levels. TRPM7 overexpression also abolished miR-129-5p-induced elevation on cell viability and reduction on apoptosis as well as attenuated miR-129-5p-induced inhibition on reactive oxygen species and IL-1ß production. Besides, H/R-induced NLRP3 inflammasome activation was inhibited by miR-129-5p mimic but reactivated by TRPM7. In conclusion, miR-129-5p alleviates H/R injury of H9c2 cardiomyocytes by targeting TRPM7 and inhibiting NLRP3 inflammasome activation, suggesting that miR-129-5p and TRPM7 may be potential therapeutic targets for myocardial I/R injury.


Assuntos
Apoptose , Inflamassomos/metabolismo , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Cálcio/metabolismo , Hipóxia Celular , Linhagem Celular , Mediadores da Inflamação/metabolismo , Interleucina-1beta/metabolismo , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/patologia , Estresse Oxidativo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Canais de Cátion TRPM/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
ACS Nano ; 18(22): 14020-14028, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38764286

RESUMO

The electrochemical CO2 reduction reaction (CO2RR) has emerged as a promising approach for sustainable carbon cycling and valuable chemical production. Various methods and strategies have been explored to boost CO2RR performance. One of the most promising strategies includes the construction of stable ionic interfaces on metallic or molecular catalysts using organic or inorganic cations, which has demonstrated a significant improvement in catalytic performance. The stable ionic interface is instrumental in adjusting adsorption behavior, influencing reactive intermediates, facilitating mass transportation, and suppressing the hydrogen evolution reaction, particularly under acidic conditions. In this Perspective, we provide an overview of the recent advancements in building ionic interfaces in the electrocatalytic process and discuss the application of this strategy to improve the CO2RR performance of metallic and molecular catalysts. We aim to convey the future trends and opportunities in creating ionic interfaces to further enhance carbon utilization efficiency and the productivity of CO2RR products. The emphasis of this Perspective lies in the pivotal role of ionic interfaces in catalysis, providing a valuable reference for future research in this critical field.

5.
Adv Mater ; 34(42): e2110496, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36008371

RESUMO

The incorporation of charged functional groups is effective to modulate the activity of molecular complexes for the CO2 reduction reaction (CO2 RR), yet long-term heterogeneous electrolysis is often hampered by catalyst leaching. Herein, an electrocatalyst of atomically thin, cobalt-porphyrin-based, ionic-covalent organic nanosheets (CoTAP-iCONs) is synthesized via a post-synthetic modification strategy for high-performance CO2 -to-CO conversion. The cationic quaternary ammonium groups not only enable the formation of monolayer nanosheets due to steric hindrance and electrostatic repulsion, but also facilitate the formation of a *COOH intermediate, as suggested by theoretical calculations. Consequently, CoTAP-iCONs exhibit higher CO2 RR activity than other cobalt-porphyrin-based structures: an 870% and 480% improvement of CO current densities compared to the monomer and neutral nanosheets, respectively. Additionally, the iCONs structure can accommodate the cationic moieties. In a flow cell, CoTAP-iCONs attain a very small onset overpotential of 40 mV and a stable total current density of 212 mA cm-2 with CO Faradaic efficiency of >95% at -0.6 V for 11 h. Further coupling the flow electrolyzer with commercial solar cells yields a solar-to-CO conversion efficiency of 13.89%. This work indicates that atom-thin, ionic nanosheets represent a promising structure for achieving both tailored activity and high stability.

6.
ChemSusChem ; 12(20): 4685-4692, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31419062

RESUMO

An attractive photoanode material, WO3 , has suffered from its limited visible-light absorption and sluggish surface reaction kinetics, as well as poor stability in neutral electrolytes. Herein, a NiFe/CQD/WO3 composite photoanode was designed and fabricated, with loading of carbon quantum dots (CQDs) and electrodeposition of NiFe layered double hydroxide. The NiFe/CQD/WO3 photoanode obtained a photocurrent density of 1.43 mA cm-2 at 1.23 V vs. reversible hydrogen electrode, which is approximately three times higher than that of bare WO3 . During the test period of 3 h, the stability of WO3 was improved substantially after the loading of cocatalysts. Furthermore, mechanistic insights of the favored band structure and beneficial charge-transfer pathway elucidate the high photoelectrochemical performance of the NiFe/CQD/WO3 composite photoanode.

7.
Chem Commun (Camb) ; 55(17): 2529-2532, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30742154

RESUMO

[Fe2(TPA)2(µ-O)Cl2]2+ (TPA = tris(2-pyridylmethyl)amine) was investigated as a pre-catalyst, and greatly enhanced the photocatalytic water oxidation activity of BiVO4. An extremely high oxygen yield of 99.1% and apparent quantum yield of 44.3% were obtained in the BiVO4-NaIO3 photocatalytic water oxidation system.

8.
ACS Appl Mater Interfaces ; 11(26): 23135-23143, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252488

RESUMO

The development of efficient and stable catalyst systems using low-cost, abundant, and nontoxic materials is the primary demand for photocatalytic water oxidation. Distinguishing the true active species in a heterogeneous catalytic system is important for construction of efficient catalytic systems. Herein, hydrothermally synthesized Ti3+ self-doped TiO2, labeled as Ti3+/TiO2, was first used as a light absorber in a powder visible light-driven photocatalytic water oxidation reaction. When an iron-containing polyoxometalate Na27[Fe11(H2O)14(OH)2(W3O10)2(α-SbW9O33)6] (Fe11) was used as a cocatalyst, an amorphous layer of active species was wrapped outside the initial Ti3+/TiO2 nanorod and the in situ formed composite was labeled as F/Ti3+/TiO2. When the composite F/Ti3+/TiO2 was tested as a photocatalytic water oxidation catalyst, dramatically improved oxygen evolution performance was achieved. The composite F/Ti3+/TiO2 showed an oxygen evolution rate of 410 µmol/g/h, which was about 11-fold higher than that of prism Ti3+/TiO2. After 24 h of illumination, an O2 yield of 36.4% was achieved. The contrast experiments, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy characterization demonstrated that FeO x is the true cocatalyst that enhanced the oxygen evolution activity of TiO2. A recycling experiment proved that the composite F/Ti3+/TiO2 has favorable stability in the oxygen production process.

9.
Chem Commun (Camb) ; 54(88): 12515-12518, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30345435

RESUMO

An octanuclear Cu(ii) cluster [Cu8(dpk·OH)8(OAc)4](ClO4)4 (dpk·OH = the monoanion of the hydrated, gem-diol form of di-2-pyridyl ketone) that contains two Cu4O4 cubic fragments similar to the Mn4CaO5 cluster in photosystem II (PSII) was found to be an efficient catalyst for photocatalytic water oxidation. In the [Ru(bpy)3]2+/Na2S2O8 system, it afforded an optimal oxygen yield, turnover number (TON) and turnover frequency (TOF) of 35.6%, 178 and 3.6 s-1, respectively, which are the highest values amongst all of the Cu-based photocatalytic water oxidation catalysts (WOCs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA