Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Plant Physiol ; 195(2): 1461-1474, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38431527

RESUMO

Black goji berry (Lycium ruthenicum Murray) contains a rich source of health-promoting anthocyanins which are used in herbal medicine and nutraceutical foods in China. A natural variant producing white berries allowed us to identify two key genes involved in the regulation of anthocyanin biosynthesis in goji berries: one encoding a MYB transcription factor (LrAN2-like) and one encoding a basic helix-loop-helix (bHLH) transcription factor (LrAN1b). We previously found that LrAN1b expression was lost in the white berry variant, but the molecular basis for this phenotype was unknown. Here, we identified the molecular mechanism for loss of anthocyanins in white goji berries. In white goji, the LrAN1b promoter region has a 229 bp deletion that removes three MYB-binding elements and one bHLH-binding element, which are key to its expression. Complementation of the white goji berry LrAN1b allele with the LrAN1b promoter restored pigmentation. Virus-induced gene silencing of LrAN1b in black goji berry reduced fruit anthocyanin biosynthesis. Molecular analyses showed that LrAN2-like and another bHLH transcription factor LrJAF13 can activate LrAN1b by binding directly to the MYB-recognizing element and bHLH-recognizing element of its promoter-deletion region. LrAN1b expression is enhanced by the interaction of LrAN2-like with LrJAF13 and the WD40 protein LrAN11. LrAN2-like and LrAN11 interact with either LrJAF13 or LrAN1b to form two MYB-bHLH-WD40 complexes, which hierarchically regulate anthocyanin biosynthesis in black goji berry. This study on a natural variant builds a comprehensive anthocyanin regulatory network that may be manipulated to tailor goji berry traits.


Assuntos
Antocianinas , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Frutas , Regulação da Expressão Gênica de Plantas , Lycium , Proteínas de Plantas , Regiões Promotoras Genéticas , Antocianinas/biossíntese , Antocianinas/metabolismo , Regiões Promotoras Genéticas/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Frutas/genética , Frutas/metabolismo , Lycium/genética , Lycium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Deleção de Sequência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant Biotechnol J ; 22(6): 1435-1452, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38194521

RESUMO

Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.


Assuntos
Betaína , Flavonoides , Estudo de Associação Genômica Ampla , Lycium , Polimorfismo de Nucleotídeo Único , Espermidina , Flavonoides/metabolismo , Lycium/genética , Lycium/metabolismo , Espermidina/metabolismo , Betaína/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Genoma de Planta/genética , Frutas/genética , Frutas/metabolismo
3.
Crit Rev Food Sci Nutr ; 63(30): 10621-10635, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35593666

RESUMO

Lycium genus (Goji berry) is recognized as a good source of homology of medicine and food, with various nutrients and phytochemicals. Lately, numerous studies have focused on the chemical constituents and biological functions of the L. barbarum L., covering phytochemical and pharmacological aspects. We aim to provide exclusive data on the nutrients of L. barbarum L. fruits and phytochemicals, including their structural characterization, the evolution of extraction, and purification processes of different phytochemicals of L. barbarum L. fruit while placing greater emphasis on their wide-ranging health effects. This review also profitably offers innovative approaches for the food industry and industrial applications of L. barbarum L. and addresses some current situations and problems in the development of L. barbarum L. in deep processing products, which can provide clues for the sustainable development of L. barbarum L. industry.


Assuntos
Lycium , Lycium/química , Alimento Funcional , Indústria Alimentícia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Frutas/química
4.
J Sci Food Agric ; 103(14): 7164-7175, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37347844

RESUMO

BACKGROUND: Lycium ruthenicum Murray (LRM), a perennial shrub plant belonging to the Solanaceae family, is rich in anthocyanins, which have anti-inflammatory, antioxidant, lipid-lowering, intestinal flora regulating, and other pharmacological qualities. This study was primarily aimed to investigate the inhibitory effect of different anthocyanin purities from LRM on angiotensin-I-converting enzyme (ACE) activity in vitro. Moreover, the inhibitory mechanism was further analyzed by molecular docking technology. RESULTS: Two main anthocyanin isomers were identified by ultra-performance liquid chromatography-tandem mass spectrometry and proton/carbon-13 nuclear magnetic resonance, namely petunidin-3-O-[rhamnopyranosyl-(trans-p-coumaroyl)]-5-O-(ß-d-glucopyranoside) (trans-Pt3R5G) and petunidin-3-O-[rhamnopyranosyl-(cis-p-coumaroyl)]-5-O-(ß-d-glucopyranoside) (cis-Pt3R5G), with a molar ratio of 9:1. Three purification grades of Pt3R5G all showed excellent inhibitory effects on ACE, with the half maximal inhibitory concentration (IC50 ) values being 0.562, 0.421, and 0.106 mg·mL-1 . Increasing the purity may reduce the IC50 within a certain concentration range. An enzymatic kinetic experiment showed that the inhibitory effect of Pt3R5G on ACE was reversible and non-competitive: Pt3R5G and substrate were not in competition for the active sites of ACE. Molecular docking technology further revealed the possible mechanism was that Pt3R5G and ACE amino acid residues were interacting by hydrogen bonds to exert the inhibitory effect. CONCLUSION: The results indicated that Pt3R5G from LRM was highly effective at inhibiting ACE activity in vitro, with the hydrogen bonds of Pt3R5G and ACE amino acid residues exerting the inhibition. As a potential plant-based ACE inhibitor, Pt3R5G can be used as a functional ingredient for antihypertensive effects. © 2023 Society of Chemical Industry.

5.
BMC Plant Biol ; 22(1): 8, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34979910

RESUMO

BACKGROUND: High soil salinity often adversely affects plant physiology and agricultural productivity of almost all crops worldwide, such as the crude drug known as wolfberry. However, the mechanism of this action in wolfberry is not fully understood yet. RESULTS: Here in this study, we studied different mechanisms potentially in Chinese wolfberry (Lycium chinese, LC) and black wolfberry (L. ruthenicum, LR) under salinity stress, by analyzing their transcriptome, metabolome, and hormone changes. The hormone detection analysis revealed that the ABA content was significantly lower in LR than LC under normal condition, and increased sharply under salinity stress in LR but not in LC. The transcriptome analysis showed that the salinity-responsive genes in wolfberry were mainly enriched in MAPK signaling, amino sugar and nucleotide sugar metabolism, carbon metabolism, and plant hormone signal transduction pathways in LC, while mainly related to carbon metabolism and protein processing in endoplasmic reticulum in LR. Metabolome results indicated that LR harbored higher flavone and flavonoid contents than LC under normal condition. However, the flavone and flavonoid contents were hardly changed in LR, but increased substantially in LC when exposed to salinity stress. CONCLUSIONS: Our results adds ABA and flavone to mechanism understanding of salinity tolerance in wolfberry. In addition, flavone plays a positive role in resistance to salinity stress in wolfberry.


Assuntos
Lycium/fisiologia , Metaboloma/fisiologia , Estresse Salino/genética , Transcriptoma/fisiologia , Lycium/genética , Especificidade da Espécie
6.
Arch Microbiol ; 204(3): 197, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35217917

RESUMO

Lycium barbarum L. is a well-known traditional geoherb in Ningxia, China. The fruits of L. barbarum contain several dietary constituents, and thus, they exert many beneficial effects on human health. However, a few studies have been conducted on the geoherb L. barbarum and its rhizosphere soil fungal community. In this study, we determined the physicochemical properties and fungal community structure of rhizosphere soil of L. barbarum from three regions of China, namely Ningxia (NX), Qinghai (QH), and Xinjiang (XJ), during three development stages of L. barbarum. Soil pH varied between 7.56 and 8.60 across the three regions, indicating that alkaline soil is conducive to the growth of L. barbarum. The majority of soil properties in NX, an authentic geoherb-producing area, were substantially inferior to those in XJ and QH during all three developmental stages. Total sugar, polysaccharide (LBP), and flavonoid contents were the highest in wolfberry fruits from NX. High-throughput sequencing showed that the abundance of the soil fungal population in NX was higher than that in QH and XJ during the flowering and fruiting stage and summer dormant stage. Moreover, the soil fungal diversity increased with the development of wolfberry. Ascomycota and Mortierellomycota were the predominant phyla in the rhizosphere fungal communities in all samples. Redundancy analysis showed a significant correlation of the soil-available phosphorus and LBP of wolfberry fruits with the fungal community composition. The characteristics of rhizosphere fungal communities determined in the present study provide insights into the mechanism of geoherb formation in NX wolfberry.


Assuntos
Lycium , Micobioma , Humanos , Lycium/química , Polissacarídeos , Rizosfera , Solo , Microbiologia do Solo
7.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216373

RESUMO

The R2R3-MYB is a large gene family involved in various plant functions, including carotenoid biosynthesis. However, this gene family lacks a comprehensive analysis in wolfberry (Lycium barbarum L.) and other Solanaceae species. The recent sequencing of the wolfberry genome provides an opportunity for investigating the organization and evolutionary characteristics of R2R3-MYB genes in wolfberry and other Solanaceae species. A total of 610 R2R3-MYB genes were identified in five Solanaceae species, including 137 in wolfberry. The LbaR2R3-MYB genes were grouped into 31 subgroups based on phylogenetic analysis, conserved gene structures, and motif composition. Five groups only of Solanaceae R2R3-MYB genes were functionally divergent during evolution. Dispersed and whole duplication events are critical for expanding the R2R3-MYB gene family. There were 287 orthologous gene pairs between wolfberry and the other four selected Solanaceae species. RNA-seq analysis identified the expression level of LbaR2R3-MYB differential gene expression (DEGs) and carotenoid biosynthesis genes (CBGs) in fruit development stages. The highly expressed LbaR2R3-MYB genes are co-expressed with CBGs during fruit development. A quantitative Real-Time (qRT)-PCR verified seven selected candidate genes. Thus, Lba11g0183 and Lba02g01219 are candidate genes regulating carotenoid biosynthesis in wolfberry. This study elucidates the evolution and function of R2R3-MYB genes in wolfberry and the four Solanaceae species.


Assuntos
Carotenoides/metabolismo , Genes de Plantas/genética , Genes myb/genética , Lycium/genética , Família Multigênica/genética , Proteínas de Plantas/genética , Solanaceae/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta/genética , Filogenia , Fatores de Transcrição/genética
8.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955573

RESUMO

The B-box proteins (BBXs) are a family of zinc-finger transcription factors with one/two B-Box domain(s) and play important roles in plant growth and development as well as stress responses. Wolfberry (Lycium barbarum L.) is an important traditional medicinal and food supplement in China, and its genome has recently been released. However, comprehensive studies of BBX genes in Lycium species are lacking. In this study, 28 LbaBBX genes were identified and classified into five clades by a phylogeny analysis with BBX proteins from Arabidopsis thaliana and the LbaBBXs have similar protein motifs and gene structures. Promoter cis-regulatory element prediction revealed that LbaBBXs might be highly responsive to light, phytohormone, and stress conditions. A synteny analysis indicated that 23, 20, 8, and 5 LbaBBX genes were orthologous to Solanum lycopersicum, Solanum melongena, Capsicum annuum, and Arabidopsis thaliana, respectively. The gene pairs encoding LbaBBX proteins evolved under strong purifying selection. In addition, the carotenoid content and expression patterns of selected LbaBBX genes were analyzed. LbaBBX2 and LbaBBX4 might play key roles in the regulation of zeaxanthin and antheraxanthin biosynthesis. Overall, this study improves our understanding of LbaBBX gene family characteristics and identifies genes involved in the regulation of carotenoid biosynthesis in wolfberry.


Assuntos
Arabidopsis , Lycium , Arabidopsis/genética , Arabidopsis/metabolismo , Carotenoides , Regulação da Expressão Gênica de Plantas , Lycium/genética , Lycium/metabolismo , Filogenia , Proteínas de Plantas/metabolismo
9.
Molecules ; 27(7)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35408540

RESUMO

Lyciumruthenicum Murray (L. ruthenicum) has been used both as traditional Chinese medicine and food. Recent studies indicated that anthocyanins are the most abundant bioactive compounds in the L. ruthenicum fruits. The purpose of this study was to investigate the preventive effects and the mechanism of the anthocycanins from the fruit of L. ruthenicum (ACN) in high-fat diet-induced obese mice. In total, 24 male C57BL/6J mice were divided into three groups: control group (fed a normal diet), high-fat diet group (fed a high-fat diet, HFD), and HFD +ACN group (fed a high-fat diet and drinking distilled water that contained 0.8% crude extract of ACN). The results showed that ACN could significantly reduce the body weight, inhibit lipid accumulation in liver and white adipose tissue, and lower the serum total cholesterol and low-density lipoprotein cholesterol levels compared to that of mice fed a high-fat diet. 16S rRNA gene sequencing of bacterial DNA demonstrated that ACN prevent obesity by enhancing the diversity of cecal bacterial communities, lowering the Firmicutes-to-Bacteroidota ratio, increasing the genera Akkermansia, and decreasing the genera Faecalibaculum. We also studied the inhibitory effect of ACN on pancreatic lipase. The results showed that ACN has a high affinity for pancreatic lipase and inhibits the activity of pancreatic lipase, with IC50 values of 1.80 (main compound anthocyanin) and 3.03 mg/mL (crude extract), in a competitive way. Furthermore, fluorescence spectroscopy studies showed that ACN can quench the intrinsic fluorescence of pancreatic lipase via a static mechanism. Taken together, these findings suggest that the anthocyanins from L. ruthenicum fruits could have preventive effects in high-fat-diet induced obese mice by regulating the intestinal microbiota and inhibiting the pancreatic lipase activity.


Assuntos
Dieta Hiperlipídica , Microbioma Gastrointestinal , Animais , Antocianinas/química , Antocianinas/farmacologia , Colesterol/farmacologia , Dieta Hiperlipídica/efeitos adversos , Lipase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Extratos Vegetais/farmacologia , RNA Ribossômico 16S
10.
BMC Plant Biol ; 21(1): 350, 2021 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-34303361

RESUMO

BACKGROUND: Lycium Linn. (Solanaceae) is a genus of economically important plants producing fruits and leaves with high nutritional value and medicinal benefits. However, genetic analysis of this plant and molecular breeding for quality improvement are limited by the lack of sufficient molecular markers. RESULTS: In this study, two parental strains, 'Ningqi No. 1' (Lycium barbarum L.) and 'Yunnan Gouqi' (Lycium yunnanense Kuang et A.M. Lu), and 200 F1 hybrid individuals were resequenced for genetic analysis. In total, 8,507 well-selected SNPs were developed, and a high-density genetic map (NY map) was constructed with a total genetic distance of 2,122.24 cM. A consensus genetic map was established by integrating the NY map and a previously published genetic map (NC map) containing 15,240 SNPs, with a total genetic distance of 3,058.19 cM and an average map distance of 0.21 cM. The 12 pseudochromosomes of the Lycium reference genome were anchored using this consensus genetic map, with an anchoring rate of 64.3%. Moreover, weak collinearities between the consensus map and the pepper, potato, and tomato genomes were observed. Twenty-five stable QTLs were identified for leaf- and fruit-related phenotypes, including fruit weight, fruit longitude, leaf length, the fruit index, and the leaf index; these stable QTLs were mapped to four different linkage groups, with LOD scores ranging from 2.51 to 19.37 and amounts of phenotypic variance explained from 6.2% to 51.9%. Finally, 82 out of 188 predicted genes underlying stable QTLs for fruit-related traits were differentially expressed according to RNA-seq analysis. CONCLUSIONS: A chromosome-level assembly can provide a foundation for further functional genomics research for wolfberry. The genomic regions of these stably expressed QTLs could be used as targets for further fine mapping and development of molecular markers for marker-assisted selection (MAS). The present study provided valuable information on saturated SNP markers and reliable QTLs for map-based cloning of functional genes related to yield and morphological traits in Lycium spp.


Assuntos
Mapeamento Cromossômico , Frutas/genética , Ligação Genética , Marcadores Genéticos , Lycium/genética , Folhas de Planta/genética , Locos de Características Quantitativas , China , Produtos Agrícolas/genética , Variação Genética , Fenótipo , Sintenia/genética
11.
BMC Plant Biol ; 19(1): 317, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307384

RESUMO

BACKGROUND: Anthocyanins, which are colored pigments, have long been used as food and pharmaceutical ingredients due to their potential health benefits, but the intermediate signals through which environmental or developmental cues regulate anthocyanin biosynthesis remains poorly understood. Fleshy fruits have become a good system for studying the regulation of anthocyanin biosynthesis, and exploring the mechanism underlying pigment metabolism is valuable for controlling fruit ripening. RESULTS: The present study revealed that ABA accumulated during Lycium fruit ripening, and this accumulation was positively correlated with the anthocyanin contents and the LbNCED1 transcript levels. The application of exogenous ABA and of the ABA biosynthesis inhibitor fluridon increased and decreased the content of anthocyanins in Lycium fruit, respectively. This is the first report to show that ABA promotes the accumulation of anthocyanins in Lycium fruits. The variations in the anthocyanin content were consistent with the variations in the expression of the genes encoding the MYB-bHLH-WD40 transcription factor complex or anthocyanin biosynthesis-related enzymes. Virus-induced LbNCED1 gene silencing significantly slowed fruit coloration and decreased both anthocyanin and ABA accumulation during Lycium fruit ripening. An qRT-PCR analysis showed that LbNCED1 gene silencing clearly reduced the transcript levels of both structural and regulatory genes in the flavonoid biosynthetic pathway. CONCLUSIONS: Based on the results, a model of ABA-mediated development-dependent anthocyanin biosynthesis and fruit coloration during Lycium fruit maturation was proposed. In this model, the developmental cues transcriptionally activates LbNCED1 and thus enhances accumulation of the phytohormone ABA, and the accumulated ABA stimulates transcription of the MYB-bHLH-WD40 transcription factor complex to upregulate the expression of structural genes in the flavonoid biosynthetic pathway and thereby promoting anthocyanin production and fruit coloration. Our results provide a valuable strategy that could be used in practice to regulate the ripening and quality of fresh fruit in medicinal and edible plants by modifying the phytohormone ABA.


Assuntos
Ácido Abscísico/metabolismo , Antocianinas/biossíntese , Frutas/metabolismo , Lycium/metabolismo , Pigmentação , Reguladores de Crescimento de Plantas/metabolismo , Dioxigenases/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Lycium/genética , Lycium/crescimento & desenvolvimento , Proteínas de Plantas/genética , Transdução de Sinais
12.
Anticancer Drugs ; 30(8): 803-811, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31419217

RESUMO

Gastric cancer (GC), one of the most common malignant tumors and the second most common leading cause of cancer-related death worldwide, is a biologically heterogeneous disease accompanied by various genetic and epigenetic alterations. However, the molecular mechanisms underlying this disease are complex and not completely understood. Increasing studies have shown that aberrant microRNA (miRNA) expression is associated with GC tumorigenesis and growth. MiR-1297 has been confirmed to be a cancer suppressor in diverse tumors in humans. However, to date, the function and mechanism of miR-1297 in GC have not been determined. Here, we found that the expression of miR-1297 was significantly reduced in GC tissues or GC cell lines compared with paracarcinoma normal tissue or normal cell lines. Exogenic overexpression of miR-1297 in GC cell lines can inhibit cell proliferation and colony formation and induce apoptosis, and inhibition of miR-1297 in GC cell lines can promote cell proliferation and colony formation, and reduce apoptosis in vitro. We further confirmed that miR-1297 acted as a tumor suppressor through targeting cell division control protein 6 (CDC6) in GC. Moreover, the inverse relationship between miR-1297 and CDC6 was verified in GC cell lines. Our results indicated that miR-1297 is a potent tumor suppressor in GC, and its antiproliferative and gene-regulatory effects are, in part, mediated through its downstream target gene, CDC6. These findings implied that miR-1297 might be used as a novel therapeutic target of GC.


Assuntos
Apoptose , Biomarcadores Tumorais/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas Nucleares/metabolismo , Neoplasias Gástricas/patologia , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Ciclo Celular , Proteínas de Ciclo Celular/genética , Humanos , Proteínas Nucleares/genética , Prognóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/cirurgia , Células Tumorais Cultivadas
13.
Molecules ; 24(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661883

RESUMO

The yield and quality of goji (Lycium barbarum L.) fruit are heavily dependent on fertilizer, especially the availability of nitrogen, phosphorus, and potassium (N, P, and K, respectively). In this study, we performed a metabolomic analysis of the response of goji berry to nitrogen fertilizer levels using an Ultra Performance Liquid Chromatography-Electrospray Ionization-Tandem Mass Spectrometry (UPLC-ESI-MS/MS) method. There was no significant difference in the fruit yield or the commodity grade between N0 (42.5 g/plant), N1 (85 g/plant), and N2 (127.5 g/plant). The primary nutrients of the goji berry changed with an increasing nitrogen fertilization. Comparative metabolomic profiling of three nitrogen levels resulted in the identification of 612 metabolites, including amino acids, flavonoids, carbohydrates, organic acids, and lipids/alcohols, among others, of which 53 metabolites (lipids, fatty acids, organic acids, and phenolamides) demonstrated significant changes. These results provide new insights into the molecular mechanisms of the relationship between yield and quality of goji berry and nitrogen fertilizer.


Assuntos
Fertilizantes , Frutas/metabolismo , Lycium/metabolismo , Metabolômica , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Frutas/efeitos dos fármacos , Lycium/efeitos dos fármacos , Nitrogênio/farmacologia , Extratos Vegetais/metabolismo , Espectrometria de Massas em Tandem
14.
Molecules ; 23(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248961

RESUMO

Modern studies have shown that pollen has a certain role in the treatment of prostate-related diseases. In the present study, pollen polysaccharides from Chinese wolfberry (WPPs) were extracted by hot-water extraction and ethanol precipitation, further purified by chromatography on a DEAE-cellulose column and Sephadex G-100 column. Homogeneous polysaccharide CF1 of WPPS was obtained, the molecular weight of which was estimated to be 1540.10 ± 48.78 kDa by HPGPC-ELSD. HPLC with PMP derivatization analysis indicated that the monosaccharide compositions of CF1 were mannose, glucuronic acid, galacturonic acid, xylose, galactose, arabinose, and trehalose, in a molar ratio of 0.68:0.59:0.27:0.24:0.22:0.67:0.08. The antitumor effects of CF1 upon MTT, Tunel assay and flow cytometry assay were investigated in vitro. The results showed that CF1 exhibited a dose-dependent antiproliferative effect, with an IC50 value of 374.11 µg/mL against DU145 prostate cancer cells. Tunel assay and flow cytometry assay showed that the antitumor activity of CF1 was related to apoptosis in vitro. The present study suggested that the CF1 of WPPs might be a potential source of antitumor functional food or agent.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Lycium/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia DEAE-Celulose , Dextranos , Relação Dose-Resposta a Droga , Humanos , Masculino , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Pólen/química , Neoplasias da Próstata/tratamento farmacológico
16.
Int J Biol Macromol ; 258(Pt 2): 129036, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38151081

RESUMO

High-fat and high-fructose diet (HFFD) consumption can induce cognitive dysfunction and gut microbiota disorder. In the present study, the effects of the polysaccharides from the fruits of Lycium barbarum L. (LBPs) on HFFD-induced cognitive deficits and gut microbiota dysbiosis were investigated. The results showed that intervention of LBPs (200 mg/kg/day) for 14 weeks could significantly prevent learning and memory deficits in HFFD-fed mice, evidenced by a reduction of latency and increment of crossing parameters of platform quadrant in Morris water maze test. Moreover, oral administration of LBPs enhanced the expression of postsynaptic density protein 95 and brain-derived neurotrophic factor and reduced the activation of glial cells in hippocampus. Besides, LBPs treatment enriched the relative abundances of Allobaculum and Lactococcus and reduced the relative abundance of Proteobacteria in gut bacterial community of HFFD-fed mice, accompanied by increased levels of short-chain fatty acids (SCFAs) as well as expression of associated G protein-coupled receptors. Furthermore, LBPs intervention prevented insulin resistance, obesity and colonic inflammation. Finally, a significant correlation was observed among neuroinflammation associated parameters, gut microbiota and SCFAs through Pearson correlation analysis. Collectively, these findings suggested that the regulation of gut microbiota might be the potential mechanism of LBPs on preventing cognitive dysfunction induced by HFFD.


Assuntos
Disfunção Cognitiva , Microbioma Gastrointestinal , Lycium , Camundongos , Animais , Glicemia , Frutas , Frutose , Polissacarídeos/farmacologia , Dieta , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL
17.
Front Plant Sci ; 15: 1310346, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444537

RESUMO

Wolfberry, also known as goji berry or Lycium barbarum, is a highly valued fruit with significant health benefits and nutritional value. For more efficient and comprehensive usage of published L. barbarum genomic data, we established the Wolfberry database. The utility of the Wolfberry Genome Database (WGDB) is highlighted through the Genome browser, which enables the user to explore the L. barbarum genome, browse specific chromosomes, and access gene sequences. Gene annotation features provide comprehensive information about gene functions, locations, expression profiles, pathway involvement, protein domains, and regulatory transcription factors. The transcriptome feature allows the user to explore gene expression patterns using transcripts per kilobase million (TPM) and fragments per kilobase per million mapped reads (FPKM) metrics. The Metabolism pathway page provides insights into metabolic pathways and the involvement of the selected genes. In addition to the database content, we also introduce six analysis tools developed for the WGDB. These tools offer functionalities for gene function prediction, nucleotide and amino acid BLAST analysis, protein domain analysis, GO annotation, and gene expression pattern analysis. The WGDB is freely accessible at https://cosbi7.ee.ncku.edu.tw/Wolfberry/. Overall, WGDB serves as a valuable resource for researchers interested in the genomics and transcriptomics of L. barbarum. Its user-friendly web interface and comprehensive data facilitate the exploration of gene functions, regulatory mechanisms, and metabolic pathways, ultimately contributing to a deeper understanding of wolfberry and its potential applications in agronomy and nutrition.

18.
J Agric Food Chem ; 71(6): 2864-2882, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36725206

RESUMO

In the present study, we found that anthocyanins from Lycium ruthenicum Murray (ACN) potently ameliorated a high-fructose diet (HFrD)-induced neuroinflammation in mice. ACN improved the integrity of the intestinal barrier and suppressed the toll-like receptor 4 (TLR4) signaling pathway to ameliorate the neuroinflammation, which was verified by Tlr4-/- mice. Furthermore, ACN could modulate the HFrD-induced dysbiosis of gut microbiota. The fecal microbiota transplantation from ACN-induced mice was sufficient to attenuate the neuroinflammation, while the amelioration of neuroinflammation by ACN was blocked upon gut microbiota depletion. In addition, ACN-induced increment of the relative abundance of Lactobacillus might be responsible for the alleviation of the neuroinflammation, which was further confirmed in the promoting effect of ACN on the growth of Lactobacillus in vitro. Overall, these results provided the evidence of a comprehensive cross-talk mechanism between ACN and neuroinflammation in HFrD-fed mice, which was mediated by reducing gut microbiota dysbiosis and maintaining the intestinal barrier integrity.


Assuntos
Antocianinas , Lycium , Animais , Camundongos , Proliferação de Células , Dieta , Disbiose/tratamento farmacológico , Disbiose/etiologia , Disbiose/metabolismo , Frutose , Lactobacillus , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias , Receptor 4 Toll-Like
19.
Food Funct ; 14(18): 8631-8645, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37670564

RESUMO

The high-fat and high-fructose diet (HFFD) is a common diet in westernized societies, which worsens disturbances in gut microbiota and bile acid (BA) metabolism. Herein, the present study aimed to investigate the effects of the water extract of Lycium barbarum fruits (LBE) on gut microbiota and BA metabolism in mice with HFFD-induced neuroinflammation. The results showed that supplementation of LBE for 14 weeks remarkably ameliorated weight gain and insulin resistance and suppressed microglial activation and neural neuroinflammation induced by HFFD. The results of Morris water maze and Y-maze tests demonstrated that LBE attenuated HFFD-induced cognitive impairment. Moreover, LBE elevated hepatic BA biosynthesis and excretion of BAs and increased elimination of BAs via the feces. Notably, LBE supplementation resulted in the enrichment of tauroursodeoxycholic acid in the cortex and hippocampus. Furthermore, the 16S rDNA sequencing results showed that LBE could modulate the structure of gut microbiota, and in the meantime decrease the relative abundance of Clostridium_XlVa, which is associated with BA homeostasis. Additionally, LBE exerted neuroprotective effects involving the increment of Lactococcus, known as a potentially beneficial bacterium. These results demonstrated that LBE could ameliorate neuroinflammation and cognitive impairment in HFFD-induced mice through the gut-liver-brain axis, which might be due to the regulation of BA homeostasis and gut microbiota in mice.


Assuntos
Eixo Encéfalo-Intestino , Lycium , Animais , Camundongos , Doenças Neuroinflamatórias , Dieta , Ácidos e Sais Biliares , Frutose/efeitos adversos
20.
Plants (Basel) ; 12(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570945

RESUMO

Carotenoids in goji (Lycium barbarum L.) have excellent health benefits, but the underlying mechanism of carotenoid synthesis and color formation in goji fruit ripening is still unclear. The present study uses transcriptomics and metabolomics to investigate carotenoid biosynthesis and color formation differences in N1 (red fruit) and N1Y (yellow fruit) at three stages of ripening. Twenty-seven carotenoids were identified in N1 and N1Y fruits during the M1, M2, and M3 periods, with the M2 and M3 periods being critical for the difference in carotenoid and color between N1 and N1Y fruit. Weighted gene co-expression network analysis (WGCNA), gene trend analysis, and correlation analysis suggest that PSY1 and ZDS16 may be important players in the synthesis of carotenoids during goji fruit ripening. Meanwhile, 63 transcription factors (TFs) were identified related to goji fruit carotenoid biosynthesis. Among them, four TFs (CMB1-1, WRKY22-1, WRKY22-3, and RAP2-13-like) may have potential regulatory relationships with PSY1 and ZDS16. This work sheds light on the molecular network of carotenoid synthesis and explains the differences in carotenoid accumulation in different colored goji fruits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA