Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 20(5)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32164287

RESUMO

In recent years, as the mechanical structure of humanoid robots increasingly resembles the human form, research on pedestrian navigation technology has become of great significance for the development of humanoid robot navigation systems. To solve the problem that the wearable inertial navigation system based on micro-inertial measurement units (MIMUs) installed on feet cannot effectively realize its positioning function when the body movement is too drastic to be measured correctly by commercial grade inertial sensors, a pedestrian navigation method based on construction of a virtual inertial measurement unit (VIMU) and gait feature assistance is proposed. The inertial data from different positions of pedestrians' lower limbs are collected synchronously via actual IMUs as training samples. The nonlinear mapping relationship between inertial information from the human foot and leg is established by a visual geometry group-long short term memory (VGG-LSTM) neural network model, based on which the foot VIMU and virtual inertial navigation system (VINS) are constructed. The VINS experimental results show that, combined with zero-velocity update (ZUPT), the integrated method of error modification proposed in this paper can effectively reduce the accumulation of positioning errors in situations where the gait type exceeds the measurement range of the inertial sensors. The positioning performance of the proposed method is more accurate and stable in complex gait types than that merely using ZUPT.


Assuntos
Pé/fisiologia , Marcha , Aprendizado de Máquina , Monitorização Ambulatorial/instrumentação , Pedestres , Aceleração , Algoritmos , Fenômenos Biomecânicos , Humanos , Monitorização Ambulatorial/métodos , Movimento (Física) , Redes Neurais de Computação , Reprodutibilidade dos Testes , Robótica , Caminhada , Dispositivos Eletrônicos Vestíveis
2.
Springerplus ; 5: 175, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27026872

RESUMO

Aiming to embed large amount of data while minimize the sum of costs of all changed pixels, a novel high capacity data hiding scheme based on (7, 4) Hamming code is realized by a family of algorithms. Firstly, n (n = 1, 2, 3) cover pixels are assigned to one set according to the payload. Then, 128 binary strings of length seven are divided into eight sets according to the syndrome of every binary string. Binary strings that share the same syndrome are classified into one set. Finally, a binary string in a certain set determined by the data to be embedded is chosen to modify some of the least significant bits of the n cover pixels. The experimental results demonstrate that the image quality of the proposed method with high embedding payload is superior to those of the related schemes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA