Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36982240

RESUMO

Persistent post-breeding induced endometritis (PPBIE) is considered a major cause of subfertility in mares. It consists of persistent or delayed uterine inflammation in susceptible mares. There are many options for the treatment of PPBIE, but in this study, a novel approach aimed at preventing the onset of PPBIE was investigated. Stallion semen was supplemented with extracellular vesicles derived from amniotic mesenchymal stromal cells (AMSC-EVs) at the time of insemination to prevent or limit the development of PPBIE. Before use in mares, a dose-response curve was produced to evaluate the effect of AMSC-EVs on spermatozoa, and an optimal concentration of 400 × 106 EVs with 10 × 106 spermatozoa/mL was identified. At this concentration, sperm mobility parameters were not negatively affected. Sixteen susceptible mares were enrolled and inseminated with semen (n = 8; control group) or with semen supplemented with EVs (n = 8; EV group). The supplementation of AMSC-EVs to semen resulted in a reduction in polymorphonuclear neutrophil (PMN) infiltration as well as intrauterine fluid accumulation (IUF; p < 0.05). There was a significant reduction in intrauterine cytokine levels (p < 0.05) for TNF-α and IL-6 and an increase in anti-inflammatory IL-10 in mares in the EV group, suggesting successful modulation of the post-insemination inflammatory response. This procedure may be useful for mares susceptible to PPBIE.


Assuntos
Endometrite , Doenças dos Cavalos , Humanos , Masculino , Cavalos , Animais , Feminino , Endometrite/prevenção & controle , Endometrite/veterinária , Inseminação Artificial/veterinária , Inseminação Artificial/métodos , Sêmen , Doenças dos Cavalos/prevenção & controle , Anti-Inflamatórios/farmacologia , Suscetibilidade a Doenças
2.
Reproduction ; 159(5): 513-523, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32103819

RESUMO

The genotype of an organism is stable throughout its life; however, its epigenome is dynamic and can be altered in response to environmental factors, such as diet. Inheritance of acquired epigenetic modifications by the next generation occurs through the germline, although the precise mechanisms remain to be elucidated. Here, we used a sheep model to evaluate if modification of the maternal diet (CTR; control, UND: undernutrition; FA: undernutrition and folic acid supplementation) during the peri-conceptional period affects the genome-wide methylation status of the gametes of male offspring. Sperm DNA methylation, measured by Reduced Representation Bisulfite Sequencing (RRBS), identified Differentially Methylated Regions (DMR) in offspring that experienced in utero undernutrition, both in UND (244) and FA (240), compared with CTR. Gene ontology (GO) analysis identified DMRs in categories related to sperm function, therefore we investigated whether the fertilizing capacity of the semen from the three groups differed in an in vitro fertilization assay. Spermatozoa from the undernourished groups showed lower motility and sperm chromatin structure abnormalities, represented by a higher percentage of DNA fragmentation and an increased number of immature cells, compared with CTR. While good quality blastocysts were obtained from all three groups, the proportion of embryos reaching the blastocyst stage was reduced in the UND vs CTR, an effect partially rescued by the FA treatment. The data reported here show that nutritional stress during early pregnancy leads to epigenetic modifications in the semen of the resulting offspring, the effects of which in next generation remain to be elucidated.


Assuntos
Metilação de DNA , Desnutrição/metabolismo , Fenômenos Fisiológicos da Nutrição Materna/fisiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Espermatozoides/metabolismo , Animais , Epigenoma , Feminino , Masculino , Gravidez , Ovinos
3.
BMC Genomics ; 20(1): 940, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31810461

RESUMO

BACKGROUND: Sperm epigenetics is an emerging area of study supported by observations reporting that abnormal sperm DNA methylation patterns are associated with infertility. Here, we explore cytosine-guanine dinucleotides (CpGs) methylation in high (HM) and low motile (LM) Bos taurus sperm populations separated by Percoll gradient. HM and LM methylation patterns were investigated by bisulfite sequencing. RESULTS: Comparison between HM and LM sperm populations revealed that methylation variation affects genes involved in chromatin organization. CpG Islands (CGIs), were highly remodelled. A high proportion of CGIs was found to be methylated at low/intermediate level (20-60%) and associated to the repetitive element BTSAT4 satellite. The low/intermediate level of methylation in BTSAT4 was stably maintained in pericentric regions of chromosomes. BTSAT4 was hypomethylated in HM sperm populations. CONCLUSIONS: The characterization of the epigenome in HM and LM Bos taurus sperm populations provides a first step towards the understanding of the effect of methylation on sperm fertility. Methylation variation observed in HM and LM populations in genes associated to DNA structure remodelling as well as in a repetitive element in pericentric regions suggests that maintenance of chromosome structure through epigenetic regulation is probably crucial for correct sperm functionality.


Assuntos
Metilação de DNA , Repetições de Microssatélites , Análise de Sequência de DNA/veterinária , Motilidade dos Espermatozoides/genética , Espermatozoides/fisiologia , Animais , Bovinos , Centrômero/genética , Cromossomos de Mamíferos/genética , Ilhas de CpG , Epigênese Genética , Epigenômica , Masculino
4.
BMC Genomics ; 19(1): 123, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29409445

RESUMO

BACKGROUND: Numerous studies have established a link between maternal diet and the physiological and metabolic phenotypes of their offspring. In previous studies in sheep, we demonstrated that different maternal diets altered the transcriptome of fetal tissues. However, the mechanisms underlying transcriptomic changes are poorly understood. DNA methylation is an epigenetic mark regulating transcription and is largely influenced by dietary components of the one-carbon cycle that generate the methyl group donor, SAM. Therefore, in the present study, we tested whether different maternal diets during pregnancy would alter the DNA methylation and gene expression patterns in fetal tissues. RESULTS: Pregnant ewes were randomly divided into two groups which received either hay or corn diet from mid-gestation (day 67 ± 5) until day 131 ± 1 when fetuses were collected by necropsy. A total of 1516 fetal longissimus dorsi (LD) tissues were used for DNA methylation analysis and gene expression profiling. Whole genome DNA methylation using methyl-binding domain enrichment analysis revealed 60 differentially methylated regions (DMRs) between hay and corn fetuses with 39 DMRs more highly methylated in the hay fetuses vs. 21 DMRs more highly methylated in the corn fetuses. Three DMRs (LPAR3, PLIN5-PLIN4, and the differential methylation of a novel lincRNA) were validated using bisulfite sequencing. These DMRs were associated with differential gene expression. Additionally, significant DNA methylation differences were found at the single CpG level. Integrative methylome and transcriptome analysis revealed an association between gene expression and inter-/intragenic methylated regions. Furthermore, intragenic DMRs were found to be associated with expression of neighboring genes. CONCLUSIONS: The findings of this study imply that maternal diet from mid- to late-gestation can shape the epigenome and the transcriptome of fetal tissues, and putatively affect phenotypes of the lambs.


Assuntos
Metilação de DNA , Dieta , Epigênese Genética , Feto/metabolismo , Exposição Materna , Músculos/metabolismo , Ovinos/genética , Transcriptoma , Animais , Biologia Computacional/métodos , Feminino , Regulação da Expressão Gênica , Genoma , Desequilíbrio de Ligação , Gravidez , Reprodutibilidade dos Testes , Análise de Sequência de DNA , Ovinos/embriologia
5.
BMC Genomics ; 19(1): 417, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848285

RESUMO

BACKGROUND: Molecular regulation of the hypothalamic-pituitary-gonadal (HPG) axis plays an essential role in the fine tuning of seasonal estrus in Capra hircus. Noncoding RNAs (ncRNAs) are emerging as key regulators in sexual development and mammalian reproduction. In order to identify ncRNAs and to assess their expression patterns, along the HPG axis, we sequenced ncRNA libraries from hypothalamus, pituitary and ovary of three goats. RESULTS: Among the medium length noncoding RNAs (mncRNAs) identified, small nucleolar RNAs (snoRNAs) and transfer RNAs (tRNAs) were found to be more abundant in ovary and hypothalamus, respectively. The observed GC content was representative for different classes of ncRNAs, allowing the identification of a tRNA-derived RNA fragments (tRFs) subclass, which had a peak distribution around 32-38% GC content in the hypothalamus. Differences observed among organs confirmed the specificity of microRNA (miRNA) profiles for each organ system. CONCLUSIONS: Data on ncRNAs in organs constituting the HPG axis will contribute to understanding their role in the physiological regulation of reproduction in goats.


Assuntos
Perfilação da Expressão Gênica , Cabras , Hipotálamo/metabolismo , Ovário/metabolismo , Hipófise/metabolismo , RNA não Traduzido/genética , Animais , Feminino , MicroRNAs/genética
6.
BMC Genomics ; 18(1): 476, 2017 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-28645321

RESUMO

BACKGROUND: DNA methylation is a frequently studied epigenetic modification due to its role in regulating gene expression and hence in biological processes and in determining phenotypic plasticity in organisms. Rudimentary DNA methylation patterns for some livestock species are publically available: among these, goat methylome deserves to be further explored. RESULTS: Genome-wide DNA methylation maps of the hypothalamus and ovary from Saanen goats were generated using Methyl-CpG binding domain protein sequencing (MBD-seq). Analysis of DNA methylation patterns indicate that the majority of methylation peaks found within genes are located gene body regions, for both organs. Analysis of the distribution of methylated sites per chromosome showed that chromosome X had the lowest number of methylation peaks. The X chromosome has one of the highest percentages of methylated CpG islands in both organs, and approximately 50% of the CpG islands in the goat epigenome are methylated in hypothalamus and ovary. Organ-specific Differentially Methylated Genes (DMGs) were correlated with the expression levels. CONCLUSIONS: The comparison between transcriptome and methylome in hypothalamus and ovary showed that a higher level of methylation is not accompanied by a higher gene suppression. The genome-wide DNA methylation map for two goat organs produced here is a valuable starting point for studying the involvement of epigenetic modifications in regulating goat reproduction performance.


Assuntos
Metilação de DNA , Genômica , Cabras/genética , Hipotálamo/metabolismo , Ovário/metabolismo , Animais , Cromossomos de Mamíferos/genética , Ilhas de CpG/genética , Feminino , Especificidade de Órgãos
7.
Int J Syst Evol Microbiol ; 67(10): 3865-3871, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28884665

RESUMO

A strain of an achlorophyllic alga, named PR24T, was isolated from cow milk samples from the state of Minas Gerais, Brazil. Based on 18S rDNA, 28S rRNA, D1/D2 region of the LSU rDNA and SSU rRNA gene sequence similarities, this strain was found to be a member of the genus Prototheca and closely related to Protothecablaschkeae SAG2064T. However, the novel strain could easily be distinguished from recognized Prototheca species by internal transcribed spacer, species-specific PCR, single-strand conformation polymorphism-PCR analysis and phenotypic characteristics. The inability to grow in Sabouraud broth at pH 4.0 and the different cellular fatty acid composition clearly distinguished PR24T from the reference strain of P. blaschkeae. The combination of genotypic and phenotypic data indicates that strain PR24T represents a subspecies of P. blaschkeae, for which the name Prototheca blaschkeae subsp. brasiliensis subsp. nov. is proposed. The respective type strain is PR24T (=DSM 103592T=IHEM 26958T).


Assuntos
Bovinos/microbiologia , Leite/microbiologia , Filogenia , Prototheca/classificação , Animais , Composição de Bases , Brasil , DNA de Algas/genética , Ácidos Graxos/química , Feminino , Mastite Bovina , Prototheca/genética , Prototheca/isolamento & purificação , RNA Ribossômico 18S/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
8.
Biol Reprod ; 95(1): 12, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27281703

RESUMO

Viral infections can cause genital tract disorders (including abortion) in cows, and bovine herpesvirus 4 (BoHV-4) is often present in endometritis-affected animals. A major problem with cattle uterine viral infections in general, and BoHV-4 in particular, is our limited understanding of the pathogenic role(s) that these infections play in the endometrium. A similar lack of knowledge holds for the molecular mechanisms utilized, and the host cell pathways affected, by BoHV-4. To begin to fill these gaps, we set up optimized conditions for BoHV-4 infection of a pure population of bovine endometrial stromal cells (BESCs) to be used as source material for RNA sequencing-based transcriptome profiling. Many genes were found to be upregulated (417) or downregulated (181) after BoHV-4 infection. As revealed by enrichment functional analysis on differentially expressed genes, BoHV-4 infection affects various pathways related to cell proliferation and cell surface integrity, at least three of which were centered on upregulation of matrix metalloproteinase 1 (MMP1) and interleukin 8 (IL8). This was confirmed by reverse transcription PCR, real-time PCR, Western-immunoblot analysis, and a luciferase assay with a bovine MMP1-specific promoter reporter construct. Further, it was found that MMP1 transcription was upregulated by the BoHV-4 transactivator IE2/RTA, leading to abnormally high metalloproteinase tissue levels, potentially leading to defective endometrium healing and unresolved inflammation. Based on these findings, we propose a new model for BoHV-4 action centered on IE2-mediated MMP1 upregulation and novel therapeutic interventions based on IFN gamma-mediated MMP1 downregulation.


Assuntos
Endométrio/metabolismo , Herpesvirus Bovino 4 , Metaloproteinase 1 da Matriz/metabolismo , Células Estromais/metabolismo , Regulação para Cima , Animais , Bovinos , Endométrio/patologia , Endométrio/virologia , Feminino , Perfilação da Expressão Gênica , Inflamação/metabolismo , Inflamação/patologia , Inflamação/virologia , Interleucina-8/genética , Interleucina-8/metabolismo , Metaloproteinase 1 da Matriz/genética , Células Estromais/patologia , Células Estromais/virologia
9.
Genet Sel Evol ; 48(1): 53, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27481215

RESUMO

This review, is a synopsis of advanced reproductive technologies in farm animals, including the discussion of their limiting factors as revealed by the study of offspring derived from embryos produced in vitro and through cloning. These studies show that the problems of epigenetic mis-programming, which were reported in the initial stages of assisted reproduction, still persist. The importance of whole-genome analyses, including the methylome and transcriptome, in improving embryo biotechnologies in farm animals, are discussed. Genome editing approaches for the improvement of economically-relevant traits in farm animals are also described. Efficient farm animal embryo biotechnologies, including cloning and the most recent technologies such as genome editing, will effectively complement the latest strategies to accelerate genetic improvement of farm animals.


Assuntos
Animais Domésticos/genética , Genômica/métodos , Técnicas de Reprodução Assistida/veterinária , Animais , Biotecnologia , Cruzamento , Clonagem de Organismos/veterinária , Epigênese Genética , Edição de Genes
10.
iScience ; 27(1): 108696, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38205246

RESUMO

Muscular dystrophies (MDs) are incurable genetic myopathies characterized by progressive degeneration of skeletal muscles. Dystrophic mice lacking the transcription factor Nfix display morphological and functional improvements of the disease. Recently, we demonstrated that MAPK signaling pathway positively regulates Nfix in muscle development and that Cyanidin, a natural antioxidant molecule, strongly ameliorates the pathology. To explore a synergistic approach aimed at treating MDs, we administered Trametinib, a clinically approved MEK inhibitor, alone or combined with Cyanidin to adult Sgca null mice. We observed that chronic treatment with Trametinib and Cyanidin reduced Nfix in myogenic cells but, unexpectedly, caused ectopic calcifications exclusively in dystrophic muscles. The combined treatment with Cyanidin resulted in histological improvements by preventing Trametinib-induced calcifications in Diaphragm and Soleus. Collectively, this first pilot study revealed that Nfix is modulated by the MAPK pathway in MDs, and that Cyanidin partly rescued the unexpected ectopic calcifications caused by MEK inhibition.

11.
Front Microbiol ; 14: 1171770, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234529

RESUMO

Bovine herpesvirus 4 (BoHV-4) is a Gammaherpesvirus belonging to the Rhadinovirus genus. The bovine is BoHV-4's natural host, and the African buffalo is BoHV-4's natural reservoir. In any case, BoHV-4 infection is not associated with a specific disease. Genome structure and genes are well-conserved in Gammaherpesvirus, and the orf 45 gene and its product, ORF45, are one of those. BoHV-4 ORF45 has been suggested to be a tegument protein; however, its structure and function have not yet been experimentally characterized. The present study shows that BoHV-4 ORF45, despite its poor homology with other characterized Rhadinovirus ORF45s, is structurally related to Kaposi's sarcoma-associated herpesvirus (KSHV), is a phosphoprotein, and localizes in the host cell nuclei. Through the generation of an ORF45-null mutant BoHV-4 and its pararevertant, it was possible to demonstrate that ORF45 is essential for BoHV-4 lytic replication and is associated with the viral particles, as for the other characterized Rhadinovirus ORF45s. Finally, the impact of BoHV-4 ORF45 on cellular transcriptome was investigated, an aspect poorly explored or not at all for other Gammaherpesvirus. Many cellular transcriptional pathways were found to be altered, mainly those involving p90 ribosomal S6 kinase (RSK) and signal-regulated kinase (ERK) complex (RSK/ERK). It was concluded that BoHV-4 ORF45 has similar characteristics to those of KSHV ORF45, and its unique and incisive impact on the cell transcriptome paves the way for further investigations.

12.
J Anim Sci Biotechnol ; 14(1): 93, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37403140

RESUMO

BACKGROUND: Subclinical intramammary infection (IMI) represents a significant problem in maintaining dairy cows' health. Disease severity and extent depend on the interaction between the causative agent, environment, and host. To investigate the molecular mechanisms behind the host immune response, we used RNA-Seq for the milk somatic cells (SC) transcriptome profiling in healthy cows (n = 9), and cows naturally affected by subclinical IMI from Prototheca spp. (n = 11) and Streptococcus agalactiae (S. agalactiae; n = 11). Data Integration Analysis for Biomarker discovery using Latent Components (DIABLO) was used to integrate transcriptomic data and host phenotypic traits related to milk composition, SC composition, and udder health to identify hub variables for subclinical IMI detection. RESULTS: A total of 1,682 and 2,427 differentially expressed genes (DEGs) were identified when comparing Prototheca spp. and S. agalactiae to healthy animals, respectively. Pathogen-specific pathway analyses evidenced that Prototheca's infection upregulated antigen processing and lymphocyte proliferation pathways while S. agalactiae induced a reduction of energy-related pathways like the tricarboxylic acid cycle, and carbohydrate and lipid metabolism. The integrative analysis of commonly shared DEGs between the two pathogens (n = 681) referred to the core-mastitis response genes, and phenotypic data evidenced a strong covariation between those genes and the flow cytometry immune cells (r2 = 0.72), followed by the udder health (r2 = 0.64) and milk quality parameters (r2 = 0.64). Variables with r ≥ 0.90 were used to build a network in which the top 20 hub variables were identified with the Cytoscape cytohubba plug-in. The genes in common between DIABLO and cytohubba (n = 10) were submitted to a ROC analysis which showed they had excellent predictive performances in terms of discriminating healthy and mastitis-affected animals (sensitivity > 0.89, specificity > 0.81, accuracy > 0.87, and precision > 0.69). Among these genes, CIITA could play a key role in regulating the animals' response to subclinical IMI. CONCLUSIONS: Despite some differences in the enriched pathways, the two mastitis-causing pathogens seemed to induce a shared host immune-transcriptomic response. The hub variables identified with the integrative approach might be included in screening and diagnostic tools for subclinical IMI detection.

13.
Epigenetics Chromatin ; 16(1): 20, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254160

RESUMO

BACKGROUND: During epididymal transit spermatozoa acquire specific morphological features which enhance their ability to swim in a progressive manner and interact with the oocytes. At the same time, sperm cells undergo specific molecular rearrangements essential for the fertilizing sperm to drive a correct embryo development. To assess epigenetic sperm changes during epididymal maturation, the caput, corpus and cauda epididymis sperm tracts were isolated from eight bulls and characterized for different sperm quality parameters and for CpG DNA methylation using Reduced Representation Bisulfite Sequencing (RRBS) able to identify differentially methylated regions (DMRs) in higher CpG density regions. RESULTS: Caput sperm showed significant variation in motility and sperm kinetics variables, whereas spermatozoa collected from the corpus presented morphology variation and significant alterations in variables related to acrosome integrity. A total of 57,583 methylated regions were identified across the eight bulls, showing a significantly diverse distribution for sperm collected in the three epididymal regions. Differential methylation was observed between caput vs corpus (n = 11,434), corpus vs cauda (n = 12,372) and caput vs cauda (n = 2790). During epididymal transit a high proportion of the epigenome was remodeled, showing several regions in which methylation decreases from caput to corpus and increases from corpus to cauda. CONCLUSIONS: Specific CpG DNA methylation changes in sperm isolated from the caput, corpus, and cauda epididymis tracts are likely to refine the sperm epigenome during sperm maturation, potentially impacting sperm fertilization ability and spatial organization of the genome during early embryo development.


Assuntos
Metilação de DNA , Sêmen , Masculino , Animais , Bovinos , Epididimo/metabolismo , Maturação do Esperma , Espermatozoides/metabolismo
14.
Proteome Sci ; 10(1): 46, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22828447

RESUMO

BACKGROUND: Human mesenchymal stem cells (hMSC) have recently raised the attention because of their therapeutic potential in the novel context of regenerative medicine. However, the safety of these new and promising cellular products should be carefully defined before they can be used in the clinical setting, as. The protein expression profile of these cells might reveal potential hazards associated with senescence and tumoral transformation which may occur during culture. Proteomic is a valuable tool for hMSC characterization and identification of possible changes during expansion. RESULTS: We used Surface Enhanced Laser Desorption/Ionization-Time Of Flight-Mass Spectrometry (SELDI-ToF-MS) to evaluate the presence of stable molecular markers in adipose tissue-derived mesenchymal stem cells (AD-MSC) produced under conditions of good manufacturing practices (GMP). Proteomic patterns of cells prepared were consistent, with 4 up-regulated peaks (mass-to-charge ratio (m/z) 8950, 10087, 10345, and 13058) through subculture steps (P0-P7) with similar trend in three donors. Among the differentially expressed proteins found in the cytoplasmic and nuclear fractions, a cytoplasmic 10.1 kDa protein was upregulated during culture passages and was identified as S100A6 (Calcyclin). CONCLUSIONS: This study suggests for the first time that common variation could occur in AD-MSC from different donors, with the identification of S100A6, a protein prevalently related to cell proliferation and cell culture condition. These results support the hypothesis of common proteomic changes during MSCs expansion and could give important insight in the knowledge of molecular mechanisms intervening during MSC expansion.

16.
Front Bioeng Biotechnol ; 10: 811875, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35141212

RESUMO

Reproductive diseases could lead to infertility and have implications for overall health, most importantly due to psychological, medical and socio-economic consequences for individuals and society. Furthermore, economical losses also occur in animal husbandry. In both human and veterinary medicine, hormonal and surgical treatments, as well as assisted reproductive technologies are used to cure reproductive disorders, however they do not improve fertility. With ovarian disorders being the main reproductive pathology in human and bovine, over the past 2 decades research has approached regenerative medicine in animal model to restore normal function. Ovarian pathologies are characterized by granulosa cell and oocyte apoptosis, follicular atresia, decrease in oocyte quality and embryonic development potential, oxidative stress and mitochondrial abnormalities, ultimately leading to a decrease in fertility. At current, application of mesenchymal stromal cells or derivatives thereof represents a valid strategy for regenerative purposes. Considering their paracrine/autocrine mode of actions that are able to regenerate injured tissues, trophic support, preventing apoptosis and fibrosis, promoting angiogenesis, stimulating the function and differentiation of endogenous stem cells and even reducing the immune response, are all important players in their future therapeutic success. Nevertheless, obtaining mesenchymal stromal cells (MSC) from adult tissues requires invasive procedures and implicates decreased cell proliferation and a reduced differentiation capacity with age. Alternatively, the use of embryonic stem cells as source of cellular therapeutic encountered several ethical concerns, as well as the risk of teratoma formation. Therefore, several studies have recently focussed on perinatal derivatives (PnD) that can be collected non-invasively and, most importantly, display similar characteristics in terms of regenerating-inducing properties, immune-modulating properties and hypo-immunogenicity. This review will provide an overview of the current knowledge and future perspectives of PnD application in the treatment of ovarian hypofunction.

17.
J Anim Sci ; 100(8)2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35580043

RESUMO

Experimental and epidemiological studies suggest that maternal nutritional status during early pregnancy, including the period around the time of conception, may induce long-lasting epigenetic changes in the offspring. However, this remains largely unexplored in livestock. Therefore, the objective of this study was to evaluate if modification of the maternal diet of sheep (CTR: control; UND: 50% undernutrition) during the periconceptional period (42 d in total: -14/+28 from mating), would impact CpG methylation in muscle tissue (Longissimus dorsi) of adult offspring (11.5 mo old). Reduced representation bisulfite sequencing identified 262 (Edge-R, FDR < 0.05) and 686 (logistic regression, FDR < 0.001) differentially methylated regions (DMRs) between the UND and CTR groups. Gene ontology analysis identified genes related to development, functions of the muscular system, and steroid hormone receptor activity within the DMRs. The data reported here show that nutritional stress during early pregnancy leads to epigenetic modifications in the muscle of the resulting offspring, with possible implications for cardiac dysfunction, muscle physiology, and meat production.


The formation of the epigenetic pattern of an organism is highly sensitive to environmental factors, especially during early mammalian development, when epigenetic reprogramming of the whole genome takes place. In utero adverse conditions experienced during early pregnancy, such as maternal undernutrition, may induce long-lasting epigenetic changes in the resulting offspring. This study investigated the CpG methylation variations in muscle tissue of adult offspring induced by differences in the diet of their mothers during pregnancy. Our data show that undernutrition during pregnancy leads to epigenetic alterations in the muscle of the offspring, with a potential impact on animal health and productivity.


Assuntos
Desnutrição , Doenças dos Ovinos , Animais , Metilação de DNA , Epigênese Genética , Feminino , Desnutrição/veterinária , Fenômenos Fisiológicos da Nutrição Materna , Troca Materno-Fetal , Músculos , Gravidez , Ovinos
18.
Theriogenology ; 194: 35-45, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36208536

RESUMO

Unlike humans and many other mammalian species, conventional in vitro fertilization (IVF) in equine species is not successful. To mimic in vitro equine spermatozoon-oviduct interaction as close as possible to that which occurs in vivo, extracellular vesicles (EVs) secreted by the female genital tract were used. Three female genital tracts were collected at slaughterhouse from mares in late estrus. Ipsilateral proximal and apical horn endometrial explants were digested with collagenase and trypsin and cells obtained were cultured on insert system to allow their polarization. Ipsilateral oviducts were squeezed out to obtain spheroids. To produce EVs, proximal and apical horn endometrial cells and oviductal spheroids were cultured for three days in serum free medium. To trace interaction between spermatozoa and EVs by fluorescence microscopy, EVs were differently labeled. Pooled samples of ejaculated spermatozoa from three stallions were incubated in capacitating medium (CM) for 6 h and to induce hyperactivation for other 6 h in CM supplemented with different kind of EVs alone or in combination. A control was performed in absence of EVs. Sperm were assessed for motility by CASA system, EV incorporation by confocal microscopy and acrosomal reaction (AR) by staining with FITC-PNA/PI. In vitro fertilization was performed, and presumed zygotes were subjected to chromatin configuration. The results show that incorporation of EVs of the proximal horn does not take place, while apical horn EVs are incorporated in the head of the spermatozoon in 4 h. The EVs of oviductal spheroids are incorporated in the middle tract in 1 h. The rate of AR with EVs of the apical horn and oviductal spheroids were respectively 50.25% and 57.14%. When these EVs were added in combination, the rate of AR was 71.42%. In the control, the rate of AR was of 15%. After in vitro fertilization, 44% of oocytes showed male and female pronuclei, whereas no fertilization is obtained in the control. In conclusion, EVs from apical horn and oviduct could be involved in cell trafficking during equine semen hyperactivation, and their possible use in vitro could facilitate the development of equine reproductive biotechnologies.


Assuntos
Oviductos , Sêmen , Humanos , Cavalos , Masculino , Animais , Feminino , Oviductos/metabolismo , Espermatozoides/fisiologia , Oócitos/fisiologia , Tubas Uterinas , Fertilização in vitro/veterinária , Fertilização in vitro/métodos , Capacitação Espermática/fisiologia , Mamíferos
19.
Reprod Fertil ; 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36374278

RESUMO

Seminal plasma contains extracellular vesicles (EVs) that vehicle RNA, proteins, and other molecules able to influence the biological function of sperm. The aim of this study was to improve the fertilizing capacity of male gametes of low-fertility bulls using EVs isolated by ultracentrifugation from the seminal plasma of a bull of proven fertility. After dose-response curve, 10×106 sperm of low-fertility bulls were co-incubated for an hour with 400×106 EVs/ml. In addition, it has been verified that the incorporation of EVs, which takes place in the sperm midpiece, is maintained for 5 hours and even after cryopreservation. Subsequently, the spermatozoa of low-fertility bulls, with EVs incorporated, were used for the in vitro production of embryos. The rate of blastocyst at seventh day yield in vitro, with the use of sperm with EVs incorporated, increased by about twice the yield obtained with the same sperm in the absence of EVs: bulls having an average embryonic yield of 6.41±1.48%, 10.32±4.34% and 10.92±0.95% improved their yield to 21.21±1.99%, 22.17±6.09% and 19.99±5.78%, respectively (P<0.05). These encouraging results suggest that it might be possible to keep breeding bulls with poor fertility. Further studies will be needed to evaluate the in vivo fertility of sperm treated with EVs and understand how the content of EVs is involve in the sperm-vesicle interaction and in the improved sperm performance.

20.
Sci Rep ; 12(1): 14886, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050481

RESUMO

In buffalo (Bubalus bubalis) reproductive seasonality, causing cycles of milk production, is one of the major factors affecting farming profitability. Follicular fluid (FF) contains extracellular vesicles (EVs) playing an important role in modulating oocyte developmental competence and carrying microRNAs (miRNAs) essential for in vitro fertilization outcomes. The aim of this work was to characterize the FF-EVs-miRNA cargo of antral (An) and preovulatory (pO) follicles collected in the breeding (BS) and non-breeding (NBS) seasons, to unravel the molecular causes of the reduced oocyte competence recorded in buffalo during the NBS. In total, 1335 miRNAs (538 known Bos taurus miRNAs, 324 homologous to known miRNAs from other species and 473 new candidate miRNAs) were found. We identified 413 differentially expressed miRNAs (DE-miRNAs) (FDR < 0.05) between An and pO groups. A subset of the most significant DE-miRNAs between An and pO groups targets genes which function is related to the lipid and steroid metabolism, response to glucocorticoid and oestradiol stimulus. Comparison between BS and NBS showed 14 and 12 DE-miRNAs in An-FF-EVs and pO-FF-EVs, which regulate IL6 release and cellular adhesion, respectively. In conclusion, these results demonstrated that the miRNA cargo of buffalo FF-EVs varies in relation to both follicular development and season.


Assuntos
Bison , Vesículas Extracelulares , MicroRNAs , Animais , Búfalos/genética , Búfalos/metabolismo , Bovinos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Feminino , Líquido Folicular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA