Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Hum Brain Mapp ; 45(1): e26544, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38041476

RESUMO

Neuromelanin-sensitive magnetic resonance imaging quantitative analysis methods have provided promising biomarkers that can noninvasively quantify degeneration of the substantia nigra in patients with Parkinson's disease. However, there is a need to systematically evaluate the performance of manual and automated quantification approaches. We evaluate whether spatial, signal-intensity, or subject specific abnormality measures using either atlas based or manually traced identification of the substantia nigra better differentiate patients with Parkinson's disease from healthy controls using logistic regression models and receiver operating characteristics. Inference was performed using bootstrap analyses to calculate 95% confidence interval bounds. Pairwise comparisons were performed by generating 10,000 permutations, refitting the models, and calculating a paired difference between metrics. Thirty-one patients with Parkinson's disease and 22 healthy controls were included in the analyses. Signal intensity measures significantly outperformed spatial and subject specific abnormality measures, with the top performers exhibiting excellent ability to differentiate patients with Parkinson's disease and healthy controls (balanced accuracy = 0.89; area under the curve = 0.81; sensitivity =0.86; and specificity = 0.83). Atlas identified substantia nigra metrics performed significantly better than manual tracing metrics. These results provide clear support for the use of automated signal intensity metrics and additional recommendations. Future work is necessary to evaluate whether the same metrics can best differentiate atypical parkinsonism, perform similarly in de novo and mid-stage cohorts, and serve as longitudinal monitoring biomarkers.


Assuntos
Melaninas , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Sensibilidade e Especificidade , Imageamento por Ressonância Magnética/métodos , Biomarcadores/metabolismo , Substância Negra/metabolismo
2.
Neuroimage ; 239: 118310, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175424

RESUMO

Functional connectivity (FC) measured from functional magnetic resonance imaging (fMRI) provides a powerful tool to explore brain organization. Studies of the temporal dynamics of brain organization have shown a large temporal variability of the functional connectome, which may be associated with mental status transitions and/or adaptive process. Most dynamic studies, e.g. functional connectome and functional network connectivity (FNC), have focused on the macroscopic FC changes, i.e. the changes of temporal coherence across various brain network sources, nodes and/or regions of interest, where it is assumed within the network or node that the FC is static. In this paper, we develop a novel method to examine the spatial dynamics of FC, without the assumption of its intra-network stationarity. We applied our approach to fMRI data during an auditory oddball task (AOD) from twenty-two subjects, in an attempt to capture/validate the approach by evaluating whether spatial connectivity varies with task condition. The results showed that connectivity networks exhibit spatial variability over time, in addition to participating in conventional temporal dynamics, i.e. cross-network variability or dynamic functional network connectivity (dFNC). Furthermore, we studied the relationship of spatial dynamic in FC to cognitive processes, by performing a cluster analysis to evaluate an individual's functional correspondence towards the 'target' (oddball) detection from AOD task, and extracting cognitive task correspondence states as well as their dynamic FC spatial maps segregated by such states. We found a clear trend in different task-guided states, particularly, a prominent reduction of task stimulus synchrony state along with strong anticorrelation between default mode network (DMN) and cognitive attentional networks. We also observed an increasing occurrence of the task desynchrony state which showed an absence of DMN anticorrelation. The results highlight the impact of a well-studied cognitive task on the observed spatial dynamic structure. We also showed that the FC spatial dynamic pattern from our method largely corresponds to macroscopic dFNC patterns, but with more details and specifications over space, meanwhile the connectivity within the source itself provides novel information and varies over time. Overall, we demonstrate clear evidence of the presence of the (usually ignored) spatial dynamics of connectivity, its links to the task and implications of cognition/mental status.


Assuntos
Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Desempenho Psicomotor/fisiologia , Estimulação Acústica , Adulto , Rede de Modo Padrão/fisiologia , Imagem Ecoplanar/métodos , Feminino , Humanos , Masculino , Rede Nervosa/fisiologia , Adulto Jovem
3.
Neuroimage ; 245: 118754, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34826595

RESUMO

Cerebrovascular reactivity (CVR), which measures the ability of cerebral blood vessels to dilate or constrict in response to vasoactive stimuli such as CO2 inhalation, is an important index of the brain's vascular health. Quantification of CVR using BOLD MRI with hypercapnia challenge has shown great promises in research and clinical studies. However, in order for it to be used as a potential imaging biomarker in large-scale and multi-site studies, the reliability of CO2-CVR quantification across different MRI acquisition platforms and researchers/raters must be examined. The goal of this report from the MarkVCID small vessel disease biomarkers consortium is to evaluate the reliability of CO2-CVR quantification in three studies. First, the inter-rater reliability of CO2-CVR data processing was evaluated by having raters from 5 MarkVCID sites process the same 30 CVR datasets using a cloud-based CVR data processing pipeline. Second, the inter-scanner reproducibility of CO2-CVR quantification was assessed in 10 young subjects across two scanners of different vendors. Third, test-retest repeatability was evaluated in 20 elderly subjects from 4 sites with a scan interval of less than 2 weeks. In all studies, the CO2 CVR measurements were performed using the fixed inspiration method, where the subjects wore a nose clip and a mouthpiece and breathed room air and 5% CO2 air contained in a Douglas bag alternatively through their mouth. The results showed that the inter-rater CoV of CVR processing was 0.08 ± 0.08% for whole-brain CVR values and ranged from 0.16% to 0.88% in major brain regions, with ICC of absolute agreement above 0.9959 for all brain regions. Inter-scanner CoV was found to be 6.90 ± 5.08% for whole-brain CVR values, and ranged from 4.69% to 12.71% in major brain regions, which are comparable to intra-session CoVs obtained from the same scanners on the same day. ICC of consistency between the two scanners was 0.8498 for whole-brain CVR and ranged from 0.8052 to 0.9185 across major brain regions. In the test-retest evaluation, test-retest CoV across different days was found to be 18.29 ± 17.12% for whole-brain CVR values, and ranged from 16.58% to 19.52% in major brain regions, with ICC of absolute agreement ranged from 0.6480 to 0.7785. These results demonstrated good inter-rater, inter-scanner, and test-retest reliability in healthy volunteers, and suggested that CO2-CVR has suitable instrumental properties for use as an imaging biomarker of cerebrovascular function in multi-site and longitudinal observational studies and clinical trials.


Assuntos
Circulação Cerebrovascular , Hipercapnia/diagnóstico por imagem , Administração por Inalação , Idoso , Envelhecimento , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Dióxido de Carbono/farmacologia , Feminino , Voluntários Saudáveis , Humanos , Hipercapnia/metabolismo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Adulto Jovem
4.
Alzheimers Dement ; 17(4): 716-725, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33480157

RESUMO

The MarkVCID consortium was formed under cooperative agreements with the National Institute of Neurologic Diseases and Stroke (NINDS) and National Institute on Aging (NIA) in 2016 with the goals of developing and validating biomarkers for the cerebral small vessel diseases associated with the vascular contributions to cognitive impairment and dementia (VCID). Rigorously validated biomarkers have consistently been identified as crucial for multicenter studies to identify effective strategies to prevent and treat VCID, specifically to detect increased VCID risk, diagnose the presence of small vessel disease and its subtypes, assess prognosis for disease progression or response to treatment, demonstrate target engagement or mechanism of action for candidate interventions, and monitor disease progression during treatment. The seven project sites and central coordinating center comprising MarkVCID, working with NINDS and NIA, identified a panel of 11 candidate fluid- and neuroimaging-based biomarker kits and established harmonized multicenter study protocols (see companion paper "MarkVCID cerebral small vessel consortium: I. Enrollment, clinical, fluid protocols" for full details). Here we describe the MarkVCID neuroimaging protocols with specific focus on validating their application to future multicenter trials. MarkVCID procedures for participant enrollment; clinical and cognitive evaluation; and collection, handling, and instrumental validation of fluid samples are described in detail in a companion paper. Magnetic resonance imaging (MRI) has long served as the neuroimaging modality of choice for cerebral small vessel disease and VCID because of its sensitivity to a wide range of brain properties, including small structural lesions, connectivity, and cerebrovascular physiology. Despite MRI's widespread use in the VCID field, there have been relatively scant data validating the repeatability and reproducibility of MRI-based biomarkers across raters, scanner types, and time intervals (collectively defined as instrumental validity). The MRI protocols described here address the core MRI sequences for assessing cerebral small vessel disease in future research studies, specific sequence parameters for use across various research scanner types, and rigorous procedures for determining instrumental validity. Another candidate neuroimaging modality considered by MarkVCID is optical coherence tomography angiography (OCTA), a non-invasive technique for directly visualizing retinal capillaries as a marker of the cerebral capillaries. OCTA has theoretical promise as a unique opportunity to visualize small vessels derived from the cerebral circulation, but at a considerably earlier stage of development than MRI. The additional OCTA protocols described here address procedures for determining OCTA instrumental validity, evaluating sources of variability such as pupil dilation, and handling data to maintain participant privacy. MRI protocol and instrumental validation The core sequences selected for the MarkVCID MRI protocol are three-dimensional T1-weighted multi-echo magnetization-prepared rapid-acquisition-of-gradient-echo (ME-MPRAGE), three-dimensional T2-weighted fast spin echo fluid-attenuated-inversion-recovery (FLAIR), two-dimensional diffusion-weighted spin-echo echo-planar imaging (DWI), three-dimensional T2*-weighted multi-echo gradient echo (3D-GRE), three-dimensional T2 -weighted fast spin-echo imaging (T2w), and two-dimensional T2*-weighted gradient echo echo-planar blood-oxygenation-level-dependent imaging with brief periods of CO2 inhalation (BOLD-CVR). Harmonized parameters for each of these core sequences were developed for four 3 Tesla MRI scanner models in widespread use at academic medical centers. MarkVCID project sites are trained and certified for their instantiation of the consortium MRI protocols. Sites are required to perform image quality checks every 2 months using the Alzheimer's Disease Neuroimaging Initiative phantom. Instrumental validation for MarkVCID MRI-based biomarkers is operationally defined as inter-rater reliability, test-retest repeatability, and inter-scanner reproducibility. Assessments of these instrumental properties are performed on individuals representing a range of cerebral small vessel disease from mild to severe. Inter-rater reliability is determined by distribution of an independent dataset of MRI scans to each analysis site. Test-retest repeatability is determined by repeat MRI scans performed on individual participants on a single MRI scanner after a short (1- to 14-day) interval. Inter-scanner reproducibility is determined by repeat MRI scans performed on individuals performed across four MRI scanner models. OCTA protocol and instrumental validation The MarkVCID OCTA protocol uses a commercially available, Food and Drug Administration-approved OCTA apparatus. Imaging is performed on one dilated and one undilated eye to assess the need for dilation. Scans are performed in quadruplicate. MarkVCID project sites participating in OCTA validation are trained and certified by this biomarker's lead investigator. Inter-rater reliability for OCTA is assessed by distribution of OCTA datasets to each analysis site. Test-retest repeatability is assessed by repeat OCTA imaging on individuals on the same day as their baseline OCTA and a different-day repeat session after a short (1- to 14-day) interval. Methods were developed to allow the OCTA data to be de-identified by the sites before transmission to the central data management system. The MarkVCID neuroimaging protocols, like the other MarkVCID procedures, are designed to allow translation to multicenter trials and as a template for outside groups to generate directly comparable neuroimaging data. The MarkVCID neuroimaging protocols are available to the biomedical community and intended to be shared. In addition to the instrumental validation procedures described here, each of the neuroimaging MarkVCID kits will undergo biological validation to determine its ability to measure important aspects of VCID such as cognitive function. The analytic methods for the neuroimaging-based kits and the results of these validation studies will be published separately. The results will ultimately determine the neuroimaging kits' potential usefulness for multicenter interventional trials in small vessel disease-related VCID.


Assuntos
Biomarcadores , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Neuroimagem/normas , Idoso , Angiografia , Encéfalo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tomografia de Coerência Óptica
5.
Neurobiol Dis ; 126: 124-136, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30010004

RESUMO

BACKGROUND: Hypertension-induced microvascular brain injury is a major vascular contributor to cognitive impairment and dementia. We hypothesized that chronic hypoxia promotes the hyperphosphorylation of tau and cell death in an accelerated spontaneously hypertensive stroke prone rat model of vascular cognitive impairment. METHODS: Hypertensive male rats (n = 13) were fed a high salt, low protein Japanese permissive diet and were compared to Wistar Kyoto control rats (n = 5). RESULTS: Using electron paramagnetic resonance oximetry to measure in vivo tissue oxygen levels and magnetic resonance imaging to assess structural brain damage, we found compromised gray (dorsolateral cortex: p = .018) and white matter (corpus callosum: p = .016; external capsule: p = .049) structural integrity, reduced cerebral blood flow (dorsolateral cortex: p = .005; hippocampus: p < .001; corpus callosum: p = .001; external capsule: p < .001) and a significant drop in cortical oxygen levels (p < .05). Consistently, we found reduced oxygen carrying neuronal neuroglobin (p = .008), suggestive of chronic cerebral hypoperfusion in high salt-fed rats. We also observed a corresponding increase in free radicals (NADPH oxidase: p = .013), p-Tau (pThr231) in dorsolateral cortex (p = .011) and hippocampus (p = .003), active interleukin-1ß (p < .001) and neurodegeneration (dorsolateral cortex: p = .043, hippocampus: p = .044). Human patients with subcortical ischemic vascular disease, a type of vascular dementia (n = 38; mean age = 68; male/female ratio = 23/15) showed reduced hippocampal volumes and cortical shrinking (p < .05) consistent with the neuronal cell death observed in our hypertensive rat model as compared to healthy controls (n = 47; mean age = 63; male/female ratio = 18/29). CONCLUSIONS: Our data support an association between hypertension-induced vascular dysfunction and the sporadic occurrence of phosphorylated tau and cell death in the rat model, correlating with patient brain atrophy, which is relevant to vascular disease.


Assuntos
Encéfalo/patologia , Hipóxia Celular/fisiologia , Demência Vascular/patologia , Proteínas tau/metabolismo , Idoso , Animais , Demência Vascular/metabolismo , Feminino , Humanos , Hipertensão/complicações , Hipertensão/patologia , Masculino , Pessoa de Meia-Idade , Fosforilação , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
6.
Hum Brain Mapp ; 40(11): 3203-3221, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30950567

RESUMO

Subcortical ischemic vascular disease (SIVD) is a major subtype of vascular dementia with features that overlap clinically with Alzheimer's disease (AD), confounding diagnosis. Neuroimaging is a more specific and biologically based approach for detecting brain changes and thus may help to distinguish these diseases. There is still a lack of knowledge regarding the shared and specific functional brain abnormalities, especially functional connectivity changes in relation to AD and SIVD. In this study, we investigated both static functional network connectivity (sFNC) and dynamic FNC (dFNC) between 54 intrinsic connectivity networks in 19 AD patients, 19 SIVD patients, and 38 age-matched healthy controls. The results show that both patient groups have increased sFNC between the visual and cerebellar (CB) domains but decreased sFNC between the cognitive-control and CB domains. SIVD has specifically decreased sFNC within the sensorimotor domain while AD has specifically altered sFNC between the default-mode and CB domains. In addition, SIVD has more occurrences and a longer dwell time in the weakly connected dFNC states, but with fewer occurrences and a shorter dwell time in the strongly connected dFNC states. AD has both similar and opposite changes in certain dynamic features. More importantly, the dynamic features are found to be associated with cognitive performance. Our findings highlight similar and distinct functional connectivity alterations in AD and SIVD from both static and dynamic perspectives and indicate dFNC to be a more important biomarker for dementia since its progressively altered patterns can better track cognitive impairment in AD and SIVD.


Assuntos
Doença de Alzheimer/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Demência Vascular/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Idoso , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/psicologia , Atenção/fisiologia , Encéfalo/fisiopatologia , Demência Vascular/fisiopatologia , Demência Vascular/psicologia , Função Executiva/fisiologia , Feminino , Neuroimagem Funcional , Humanos , Processamento de Imagem Assistida por Computador , Idioma , Imageamento por Ressonância Magnética , Masculino , Memória/fisiologia , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Tempo de Reação/fisiologia
7.
Hum Brain Mapp ; 40(6): 1955-1968, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30618191

RESUMO

Dynamic functional network connectivity (dFNC) is an expansion of traditional, static FNC that measures connectivity variation among brain networks throughout scan duration. We used a large resting-state fMRI (rs-fMRI) sample from the PREDICT-HD study (N = 183 Huntington disease gene mutation carriers [HDgmc] and N = 78 healthy control [HC] participants) to examine whole-brain dFNC and its associations with CAG repeat length as well as the product of scaled CAG length and age, a variable representing disease burden. We also tested for relationships between functional connectivity and motor and cognitive measurements. Group independent component analysis was applied to rs-fMRI data to obtain whole-brain resting state networks. FNC was defined as the correlation between RSN time-courses. Dynamic FNC behavior was captured using a sliding time window approach, and FNC results from each window were assigned to four clusters representing FNC states, using a k-means clustering algorithm. HDgmc individuals spent significantly more time in State-1 (the state with the weakest FNC pattern) compared to HC. However, overall HC individuals showed more FNC dynamism than HDgmc. Significant associations between FNC states and genetic and clinical variables were also identified. In FNC State-4 (the one that most resembled static FNC), HDgmc exhibited significantly decreased connectivity between the putamen and medial prefrontal cortex compared to HC, and this was significantly associated with cognitive performance. In FNC State-1, disease burden in HDgmc participants was significantly associated with connectivity between the postcentral gyrus and posterior cingulate cortex, as well as between the inferior occipital gyrus and posterior parietal cortex.


Assuntos
Encéfalo/diagnóstico por imagem , Cognição/fisiologia , Doença de Huntington/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos
8.
Neuroimage ; 179: 448-470, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29894827

RESUMO

Independent component analysis (ICA) and seed-based analyses are widely used techniques for studying intrinsic neuronal activity in task-based or resting scans. In this work, we show there is a direct link between the two, and show that there are some important differences between the two approaches in terms of what information they capture. We developed an enhanced connectivity-matrix independent component analysis (cmICA) for calculating whole brain voxel maps of functional connectivity, which reduces the computational complexity of voxel-based connectivity analysis on performing many temporal correlations. We also show there is a mathematical equivalency between parcellations on voxel-to-voxel functional connectivity and simplified cmICA. Next, we used this cost-efficient data-driven method to examine the resting state fMRI connectivity in schizophrenia patients (SZ) and healthy controls (HC) on a whole brain scale and further quantified the relationship between brain functional connectivity and cognitive performances measured by the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) battery. Current results suggest that SZ exhibit a wide-range abnormality, primarily a decrease, in functional connectivity both between networks and within different network hubs. Specific functional connectivity decreases were associated with MATRICS performance deficits. In addition, we found that resting state functional connectivity decreases was extensively associated with aging regardless of groups. In contrast, there was no relationship between positive and negative symptoms in the patients and functional connectivity. In sum, we have developed a novel mathematical relationship between ICA and seed-based connectivity that reduces computational complexity, which has broad applicability, and showed a specific application of this approach to characterize connectivity changes associated with cognitive scores in SZ.


Assuntos
Mapeamento Encefálico/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Neurológicos , Modelos Teóricos , Rede Nervosa/fisiologia , Esquizofrenia/fisiopatologia , Adulto , Encéfalo/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Pediatr Radiol ; 48(3): 374-382, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29335880

RESUMO

BACKGROUND: Erythropoiesis stimulating agents (ESAs) are neuroprotective in cell and animal models of preterm birth. Prematurity has been shown to alter neurometabolite levels in children in studies using proton magnetic resonance spectroscopy (1H-MRS). OBJECTIVE: We hypothesized that ESA treatment in premature infants would tend to normalize neurometabolites by 4-6 years of age. MATERIALS AND METHODS: Children in a longitudinal study of neurodevelopment underwent MRI and 1H-MRS at approximately 4 years and 6 years of age. Prematurely born children (500-1,250 g birth weight) received ESAs (erythropoietin or darbepoetin) or placebo during their neonatal hospitalization, and these groups were compared to healthy term controls. 1H-MRS spectra were obtained from the anterior cingulate (gray matter) and frontal lobe white matter, assessing combined N-acetylaspartate and N-acetylaspartylglutamate (tNAA), myo-inositol, choline compounds (Cho), combined creatine and phosphocreatine, and combined glutamate and glutamine. RESULTS: No significant (P≤0.5) group differences were observed for any metabolite level. Significant age-related increases in white-matter tNAA and Cho were observed, as well as a trend for increased gray-matter tNAA. CONCLUSION: Neither prematurity nor neonatal ESA treatment was associated with differences in brain metabolite levels in the children of this study at a significance level of 0.05. These findings suggest that earlier differences that might have existed had normalized by 4-6 years of age or were too small to be statistically significant in the current sample.


Assuntos
Biomarcadores/metabolismo , Encéfalo/metabolismo , Hematínicos/uso terapêutico , Recém-Nascido Prematuro , Espectroscopia de Prótons por Ressonância Magnética/métodos , Criança , Pré-Escolar , Feminino , Humanos , Recém-Nascido , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Razão Sinal-Ruído
10.
Pediatr Res ; 82(4): 685-690, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28553989

RESUMO

BackgroundIn premature children, erythropoiesis-stimulating agents (ESAs) may improve developmental outcome. It is not clear which of the several potential mechanisms are responsible for this improvement. High-resolution MRI and diffusion tensor imaging characterize brain structure and white matter organization, offering possible insight into the long-term effect of ESAs on brain development.MethodsMRI scans were performed at 3.5-4 years of age on former preterm infants treated with ESAs or placebo, and on healthy term controls. Mean cortical thickness, surface area, and fractional anisotropy (FA) were compared across study groups, and were correlated with general IQ measures.ResultsUnivariate analysis found no significant effect of ESAs on cortical thickness (P=0.366), surface area (P=0.940), or FA (P=0.150); however, there was a greater increase in FA among ESA-treated girls. Group analysis found significant correlations between FA and Full-Scale IQ (P=0.044) and Verbal IQ (P=0.036), although there was no significant relationship between Full-Scale IQ and FA among just the preterm children.ConclusionESA treatment may have a preferential effect on white matter development in girls, although factors other than just whole-brain FA are involved in mediating cognitive outcome.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Desenvolvimento Infantil , Darbepoetina alfa/uso terapêutico , Imagem de Tensor de Difusão , Recém-Nascido Prematuro/sangue , Imageamento por Ressonância Magnética , Fatores Etários , Anisotropia , Encéfalo/crescimento & desenvolvimento , Comportamento Infantil , Pré-Escolar , Cognição , Feminino , Seguimentos , Idade Gestacional , Humanos , Recém-Nascido , Masculino , New Mexico , Valor Preditivo dos Testes , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores Sexuais , Resultado do Tratamento , Utah , Substância Branca/diagnóstico por imagem , Substância Branca/efeitos dos fármacos , Substância Branca/crescimento & desenvolvimento
11.
Proc Natl Acad Sci U S A ; 111(47): 16913-8, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25385625

RESUMO

Questions surrounding the effects of chronic marijuana use on brain structure continue to increase. To date, however, findings remain inconclusive. In this comprehensive study that aimed to characterize brain alterations associated with chronic marijuana use, we measured gray matter (GM) volume via structural MRI across the whole brain by using voxel-based morphology, synchrony among abnormal GM regions during resting state via functional connectivity MRI, and white matter integrity (i.e., structural connectivity) between the abnormal GM regions via diffusion tensor imaging in 48 marijuana users and 62 age- and sex-matched nonusing controls. The results showed that compared with controls, marijuana users had significantly less bilateral orbitofrontal gyri volume, higher functional connectivity in the orbitofrontal cortex (OFC) network, and higher structural connectivity in tracts that innervate the OFC (forceps minor) as measured by fractional anisotropy (FA). Increased OFC functional connectivity in marijuana users was associated with earlier age of onset. Lastly, a quadratic trend was observed suggesting that the FA of the forceps minor tract initially increased following regular marijuana use but decreased with protracted regular use. This pattern may indicate differential effects of initial and chronic marijuana use that may reflect complex neuroadaptive processes in response to marijuana use. Despite the observed age of onset effects, longitudinal studies are needed to determine causality of these effects.


Assuntos
Encéfalo/fisiopatologia , Fumar Maconha , Adulto , Encéfalo/patologia , Estudos de Casos e Controles , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
12.
Stroke ; 46(9): 2413-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26205374

RESUMO

BACKGROUND AND PURPOSE: The blood-brain barrier (BBB) is disrupted in small vessel disease patients with lacunes and white matter hyperintensities (WMHs). The relationship of WMHs and regional BBB permeability changes has not been studied. We hypothesized that BBB disruption occurs in normal appearing WM and regions near the WMHs. To test the hypothesis, we repeated BBB permeability measurements in patients with extensive WMHs related to Binswanger disease. METHODS: We selected a subset of 22 Binswanger disease subjects from a well-characterized larger prospective vascular cognitive impairment cohort. We used 16 age-matched controls for comparison. The abnormal WM permeability (WMP) was measured twice for several years using dynamic contrast-enhanced magnetic resonance imaging. WMP maps were constructed from voxels above a predetermined threshold. Scans from first and second visits were coregistered. WM was divided into 3 regions: normal appearing WM, WMH ring, and WMH core. The ring was defined as 2 mm on each side of the WMH border. WMP was calculated in each of the 3 specific regions. We used paired t test, ANOVA, and Fisher exact test to compare individual changes. RESULTS: WMP was significantly higher in subjects than in controls (P<0.001). There was no correlation between WMH load and WMP. High permeability regions had minimal overlap between first and second scans. Nine percent of WMP was within the WMHs, 49% within the normal appearing WM, and 52% within the WMH ring (P<0.001; ANOVA). CONCLUSIONS: Increased BBB permeability in normal appearing WM and close to the WMH borders supports a relationship between BBB disruption and the development of WMHs.


Assuntos
Barreira Hematoencefálica/fisiopatologia , Doenças de Pequenos Vasos Cerebrais , Demência Vascular , Substância Branca/patologia , Idoso , Doenças de Pequenos Vasos Cerebrais/patologia , Doenças de Pequenos Vasos Cerebrais/fisiopatologia , Demência Vascular/patologia , Demência Vascular/fisiopatologia , Progressão da Doença , Feminino , Seguimentos , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Permeabilidade
13.
Hum Brain Mapp ; 36(11): 4681-701, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26291689

RESUMO

Mapping brain connectivity based on neuroimaging data is a promising new tool for understanding brain structure and function. In this methods paper, we demonstrate that group independent component analysis (GICA) can be used to perform a dual parcellation of the brain based on its connectivity matrix (cmICA). This dual parcellation consists of a set of spatially independent source maps, and a corresponding set of paired dual maps that define the connectivity of each source map to the brain. These dual maps are called the connectivity profiles of the source maps. Traditional analysis of connectivity matrices has been used previously for brain parcellation, but the present method provides additional information on the connectivity of these segmented regions. In this paper, the whole brain structural connectivity matrices were calculated on a 5 mm(3) voxel scale from diffusion imaging data based on the probabilistic tractography method. The effect of the choice of the number of components (30 and 100) and their stability were examined. This method generated a set of spatially independent components that are consistent with the canonical brain tracts provided by previous anatomic descriptions, with the high order model yielding finer segmentations. The corpus-callosum example shows how this method leads to a robust parcellation of a brain structure based on its connectivity properties. We applied cmICA to study structural connectivity differences between a group of schizophrenia subjects and healthy controls. The connectivity profiles at both model orders showed similar regions with reduced connectivity in schizophrenia patients. These regions included forceps major, right inferior fronto-occipital fasciculus, uncinate fasciculus, thalamic radiation, and corticospinal tract. This paper provides a novel unsupervised data-driven framework that summarizes the information in a large global connectivity matrix and tests for brain connectivity differences. It has the potential for capturing important brain changes related to disease in connectivity-based disorders.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/patologia , Interpretação Estatística de Dados , Imagem de Tensor de Difusão/métodos , Rede Nervosa/patologia , Esquizofrenia/patologia , Adulto , Encéfalo/anatomia & histologia , Corpo Caloso/anatomia & histologia , Corpo Caloso/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/anatomia & histologia
14.
J Neurol Neurosurg Psychiatry ; 86(12): 1324-30, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25618903

RESUMO

OBJECTIVES: Vascular cognitive impairment (VCI) is a heterogeneous group of cerebrovascular diseases secondary to large and small vessel disease. We hypothesised that biomarkers obtained early in the disease could identify a homogeneous subpopulation with small vessel disease. METHODS: We obtained disease markers in 62 patients with VCI that included neurological findings, neuropsychological tests, multimodal MR and cerebrospinal fluid measurements of albumin ratio, matrix metalloproteinases (MMPs), amyloid-ß1-42 and phosphorylated-τ181. Proton MR spectroscopic imaging showed ischaemic white matter and permeability of the blood-brain barrier (BBB) was measured with dynamic contrast-enhanced MRI. We constructed a 10-point Binswanger disease score (BDS) with subjective and objective disease markers. In addition, an objective set of biomarkers was used for an exploratory factor analysis (EFA) to select patients with BD. Patients were followed for an average of 2 years to obtain clinical consensus diagnoses. RESULTS: An initial BDS of 6 or greater was significantly correlated with a final diagnosis of BD (p<0.05; area under the curve (AUC)=0.79). EFA reduced nine objective biomarkers to four factors. The most predictive of BD was the factor containing the inflammatory biomarkers of increased BBB permeability, elevated albumin index and reduced MMP-2 index (factor 2; AUC=0.78). Both measures independently predicted a diagnosis of BD, and combining them improved the diagnostic accuracy. CONCLUSIONS: Biomarkers predicted the diagnosis of the BD type of subcortical ischaemic vascular disease. Using pathophysiological biomarkers to select homogeneous groups of patients needs to be tested in targeted treatment trials.


Assuntos
Isquemia Encefálica/diagnóstico , Doenças de Pequenos Vasos Cerebrais/diagnóstico , Demência Vascular/diagnóstico , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/análise , Biomarcadores/líquido cefalorraquidiano , Isquemia Encefálica/líquido cefalorraquidiano , Doenças de Pequenos Vasos Cerebrais/líquido cefalorraquidiano , Demência Vascular/líquido cefalorraquidiano , Demência Vascular/terapia , Análise Fatorial , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Metaloproteinase 9 da Matriz/líquido cefalorraquidiano , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Valor Preditivo dos Testes , Proteínas tau/líquido cefalorraquidiano
15.
Neuroimage ; 101: 380-9, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25064665

RESUMO

Creative cognition emerges from a complex network of interacting brain regions. This study investigated the relationship between the structural organization of the human brain and aspects of creative cognition tapped by divergent thinking tasks. Diffusion weighted imaging (DWI) was used to obtain fiber tracts from 83 segmented cortical regions. This information was represented as a network and metrics of connectivity organization, including connectivity strength, clustering and communication efficiency were computed, and their relationship to individual levels of creativity was examined. Permutation testing identified significant sex differences in the relationship between global connectivity and creativity as measured by divergent thinking tests. Females demonstrated significant inverse relationships between global connectivity and creative cognition, whereas there were no significant relationships observed in males. Node specific analyses revealed inverse relationships across measures of connectivity, efficiency, clustering and creative cognition in widespread regions in females. Our findings suggest that females involve more regions of the brain in processing to produce novel ideas to solutions, perhaps at the expense of efficiency (greater path lengths). Males, in contrast, exhibited few, relatively weak positive relationships across these measures. Extending recent observations of sex differences in connectome structure, our findings of sexually dimorphic relationships suggest a unique topological organization of connectivity underlying the generation of novel ideas in males and females.


Assuntos
Criatividade , Imagem de Difusão por Ressonância Magnética/métodos , Rede Nervosa/anatomia & histologia , Substância Branca/anatomia & histologia , Adulto , Feminino , Humanos , Masculino , Fatores Sexuais , Adulto Jovem
16.
Hum Brain Mapp ; 35(10): 5127-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24931401

RESUMO

Previous functional neuroimaging studies demonstrated that different neural networks underlie different types of cognitive processing by engaging participants in particular tasks, such as verbal or spatial working memory (WM) tasks. However, we report here that even when a WM task is defined as verbal or spatial, different types of memory strategies may be used to complete it, with concomitant variations in brain activity. We developed a questionnaire to characterize the type of strategy used by individual members in a group of 28 young healthy participants (18-25 years) during a spatial WM task. A cluster analysis was performed to differentiate groups. We acquired functional magnetoencephalography and structural diffusion tensor imaging measures to characterize the brain networks associated with the use of different strategies. We found two types of strategies were used during the spatial WM task, a visuospatial and a verbal strategy, and brain regions and time courses of activation differed between participants who used each. Task performance also varied by type of strategy used with verbal strategies showing an advantage. In addition, performance on neuropsychological tests (indices from Wechsler Adult Intelligence Scale-IV, Rey Complex Figure Test) correlated significantly with fractional anisotropy measures for the visuospatial strategy group in white matter tracts implicated in other WM and attention studies. We conclude that differences in memory strategy can have a pronounced effect on the locations and timing of brain activation and that these differences need further investigation as a possible confounding factor for studies using group averaging as a means for summarizing results.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Memória de Curto Prazo/fisiologia , Processos Mentais/fisiologia , Vias Neurais/fisiologia , Adolescente , Adulto , Análise por Conglomerados , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Rede Nervosa/irrigação sanguínea , Rede Nervosa/fisiologia , Vias Neurais/irrigação sanguínea , Testes Neuropsicológicos , Estimulação Luminosa , Aprendizagem Verbal , Adulto Jovem
17.
J Am Heart Assoc ; 13(14): e034225, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38979810

RESUMO

BACKGROUND: The purpose of this study was to investigate the relationship between blood-brain barrier (BBB) permeability and cognitive functioning in healthy older adults and individuals with neurodegenerative diseases. METHODS AND RESULTS: A total of 124 participants with Alzheimer disease, cerebrovascular disease, or a mix Alzheimer's and cerebrovascular diseases and 55 controlparticipants underwent magnetic resonance imaging and neuropsychological testing. BBB permeability was measured with dynamic contrast-enhanced magnetic resonance imaging and white matter injury was measured using a quantitative diffusion-tensor imaging marker of white matter injury. Structural equation modeling was used to examine the relationships between BBB permeability, vascular risk burden, white matter injury, and cognitive functioning. Vascular risk burden predicted BBB permeability (r=0.24, P<0.05) and white matter injury (r=0.38, P<0.001). BBB permeability predicted increased white matter injury (r=0.34, P<0.001) and increased white matter injury predicted lower cognitive functioning (r=-0.51, P<0.001). CONCLUSIONS: The study provides empirical support for a vascular contribution to white matter injury and cognitive impairment, directly or indirectly via BBB permeability. This highlights the importance of targeting modifiable vascular risk factors to help mitigate future cognitive decline.


Assuntos
Barreira Hematoencefálica , Cognição , Humanos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Masculino , Feminino , Idoso , Cognição/fisiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/fisiopatologia , Permeabilidade Capilar , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Substância Branca/patologia , Testes Neuropsicológicos , Imageamento por Ressonância Magnética , Estudos de Casos e Controles , Imagem de Tensor de Difusão , Envelhecimento/metabolismo , Envelhecimento/psicologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Envelhecimento Saudável
18.
Imaging Neurosci (Camb) ; 2: 1-15, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38947942

RESUMO

Vascular risk factors contribute to cognitive aging, with one such risk factor being dysfunction of the blood brain barrier (BBB). Studies using non-invasive magnetic resonance imaging (MRI) techniques, such as diffusion prepared arterial spin labeling (DP-ASL), can estimate BBB function by measuring water exchange rate (kw). DP-ASL kw has been associated with cognition, but the directionality and strength of the relationship is still under investigation. An additional variable that measures water in extracellular space and impacts cognition, MRI free water (FW), may help explain prior findings. A total of 94 older adults without dementia (Mean age = 74.17 years, 59.6% female) underwent MRI (DP-ASL, diffusion weighted imaging (DWI)) and cognitive assessment. Mean kw was computed across the whole brain (WB), and mean white matter FW was computed across all white matter. The relationship between kw and three cognitive domains (executive function, processing speed, memory) was tested using multiple linear regression. FW was tested as a mediator of the kw-cognitive relationship using the PROCESS macro. A positive association was found between WB kw and executive function [F(4,85) = 7.81, p < .001, R2= 0.269; ß = .245, p = .014]. Further, this effect was qualified by subsequent results showing that FW was a mediator of the WB kw-executive function relationship (indirect effect results: standardized effect = .060, bootstrap confidence interval = .0006 to .1411). Results suggest that lower water exchange rate (kw) may contribute to greater total white matter (WM) FW which, in turn, may disrupt executive function. Taken together, proper fluid clearance at the BBB contributes to higher-order cognitive abilities.

19.
J Cereb Blood Flow Metab ; 43(5): 712-721, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522849

RESUMO

Blood-brain barrier (BBB) permeability can be measured by the ratio of albumin in cerebrospinal fluid (CSF) and blood and by dynamic contrast-enhanced MRI (DCEMRI). Albumin is a large molecule measured in CSF and blood to form the albumin index (Qalb), which is a global measure of BBB permeability, while the smaller Gadolinium molecule measures regional transfer (Ktrans); few studies have directly compared them in the same patients. We used both methods as part of a study of mechanisms of white matter injury in patients with different forms of dementia. In addition, we also measured biomarkers for inflammation, including proteases, angiogenic growth factors, and cytokines, and correlated them with the BBB results. We found that there was no correlation between Qalb and Ktrans. The Qalb was associated with the matrix metalloproteinases (MMP-2, MMP-3, and MMP-10), the angiogenic factors (VEGF-C and PlGF), and the cytokines (IL-6, IL-8 and TNF-α). On the other hand, Ktrans was associated with the diffusion measures, mean free water and PSMD, which indicate white matter injury. Our results show that the Qalb and Ktrans measure different aspects of BBB permeability, with albumin being a measure of inflammatory BBB opening and Ktrans indicating white matter injury.


Assuntos
Albuminas , Barreira Hematoencefálica , Humanos , Barreira Hematoencefálica/metabolismo , Albuminas/líquido cefalorraquidiano , Biomarcadores/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo
20.
Ann Clin Transl Neurol ; 10(10): 1802-1815, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37602520

RESUMO

INTRODUCTION: Diagnosis of dementia in the aging brain is confounded by the presence of multiple pathologies. Mixed dementia (MX), a combination of Alzheimer's disease (AD) proteins with vascular disease (VD), is frequently found at autopsy, and has been difficult to diagnose during life. This report develops a method for separating the MX group and defining preclinical AD (presence of AD factors with normal cognition) and preclinical VD subgroups (presence of white matter damage with normal cognition). METHODS: Clustering was based on three diagnostic axes: (1) AD factor (ADF) derived from cerebrospinal fluid proteins (Aß42 and pTau), (2) VD factor (VDF) calculated from mean free water and peak width of skeletonized mean diffusivity in the white matter, and (3) Cognition (Cog) based on memory and executive function. The trichotomy method was applied to an Alzheimer's Disease Neuroimaging Initiative cohort (N = 538). RESULTS: Eight biologically defined subgroups were identified which included the MX group with both high ADF and VDF (9.3%) and a preclinical VD group (3.9%), and a preclinical AD group (13.6%). Cog is significantly associated with both ADF and VDF, and the partial-correlation remains significant even when the effect of the other variable is removed (r(Cog, ADF/VDF removed) = 0.46, p < 10-28 and r(Cog, VDF/ADF removed) = 0.24, p < 10-7 ). DISCUSSION: The trichotomy method creates eight biologically characterized patient groups, which includes MX, preclinical AD, and preclinical VD subgroups. Further longitudinal studies are needed to determine the utility of the 3-way clustering method with multimodal biological biomarkers.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/patologia , Encéfalo/patologia , Cognição , Função Executiva , Envelhecimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA