Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Comput Biol ; 16(6): e1007882, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32492067

RESUMO

Molecular quantitative trait locus (QTL) analyses are increasingly popular to explore the genetic architecture of complex traits, but existing studies do not leverage shared regulatory patterns and suffer from a large multiplicity burden, which hampers the detection of weak signals such as trans associations. Here, we present a fully multivariate proteomic QTL (pQTL) analysis performed with our recently proposed Bayesian method LOCUS on data from two clinical cohorts, with plasma protein levels quantified by mass-spectrometry and aptamer-based assays. Our two-stage study identifies 136 pQTL associations in the first cohort, of which >80% replicate in the second independent cohort and have significant enrichment with functional genomic elements and disease risk loci. Moreover, 78% of the pQTLs whose protein abundance was quantified by both proteomic techniques are confirmed across assays. Our thorough comparisons with standard univariate QTL mapping on (1) these data and (2) synthetic data emulating the real data show how LOCUS borrows strength across correlated protein levels and markers on a genome-wide scale to effectively increase statistical power. Notably, 15% of the pQTLs uncovered by LOCUS would be missed by the univariate approach, including several trans and pleiotropic hits with successful independent validation. Finally, the analysis of extensive clinical data from the two cohorts indicates that the genetically-driven proteins identified by LOCUS are enriched in associations with low-grade inflammation, insulin resistance and dyslipidemia and might therefore act as endophenotypes for metabolic diseases. While considerations on the clinical role of the pQTLs are beyond the scope of our work, these findings generate useful hypotheses to be explored in future research; all results are accessible online from our searchable database. Thanks to its efficient variational Bayes implementation, LOCUS can analyze jointly thousands of traits and millions of markers. Its applicability goes beyond pQTL studies, opening new perspectives for large-scale genome-wide association and QTL analyses. Diet, Obesity and Genes (DiOGenes) trial registration number: NCT00390637.


Assuntos
Teorema de Bayes , Proteínas Sanguíneas/genética , Locos de Características Quantitativas , Biomarcadores/sangue , Estudo de Associação Genômica Ampla , Humanos
2.
Mol Cell Proteomics ; 18(6): 1242-1254, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30948622

RESUMO

Comprehensive, high throughput analysis of the plasma proteome has the potential to enable holistic analysis of the health state of an individual. Based on our own experience and the evaluation of recent large-scale plasma mass spectrometry (MS) based proteomic studies, we identified two outstanding challenges: slow and delicate nano-flow liquid chromatography (LC) and irreproducibility of identification of data-dependent acquisition (DDA). We determined an optimal solution reducing these limitations with robust capillary-flow data-independent acquisition (DIA) MS. This platform can measure 31 plasma proteomes per day. Using this setup, we acquired a large-scale plasma study of the diet, obesity and genes dietary (DiOGenes) comprising 1508 samples. Proving the robustness, the complete acquisition was achieved on a single analytical column. Totally, 565 proteins (459 identified with two or more peptide sequences) were profiled with 74% data set completeness. On average 408 proteins (5246 peptides) were identified per acquisition (319 proteins in 90% of all acquisitions). The workflow reproducibility was assessed using 34 quality control pools acquired at regular intervals, resulting in 92% data set completeness with CVs for protein measurements of 10.9%.The profiles of 20 apolipoproteins could be profiled revealing distinct changes. The weight loss and weight maintenance resulted in sustained effects on low-grade inflammation, as well as steroid hormone and lipid metabolism, indicating beneficial effects. Comparison to other large-scale plasma weight loss studies demonstrated high robustness and quality of biomarker candidates identified. Tracking of nonenzymatic glycation indicated a delayed, slight reduction of glycation in the weight maintenance phase. Using stable-isotope-references, we could directly and absolutely quantify 60 proteins in the DIA.In conclusion, we present herein the first large-scale plasma DIA study and one of the largest clinical research proteomic studies to date. Application of this fast and robust workflow has great potential to advance biomarker discovery in plasma.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteômica , Reologia , Redução de Peso , Adulto , Bases de Dados de Proteínas , Glicosilação , Humanos , Marcação por Isótopo , Proteoma/metabolismo , Padrões de Referência
3.
BMC Biol ; 18(1): 51, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32438927

RESUMO

BACKGROUND: The cline of human genetic diversity observable across Europe is recapitulated at a micro-geographic scale by variation within the Italian population. Besides resulting from extensive gene flow, this might be ascribable also to local adaptations to diverse ecological contexts evolved by people who anciently spread along the Italian Peninsula. Dissecting the evolutionary history of the ancestors of present-day Italians may thus improve the understanding of demographic and biological processes that contributed to shape the gene pool of European populations. However, previous SNP array-based studies failed to investigate the full spectrum of Italian variation, generally neglecting low-frequency genetic variants and examining a limited set of small effect size alleles, which may represent important determinants of population structure and complex adaptive traits. To overcome these issues, we analyzed 38 high-coverage whole-genome sequences representative of population clusters at the opposite ends of the cline of Italian variation, along with a large panel of modern and ancient Euro-Mediterranean genomes. RESULTS: We provided evidence for the early divergence of Italian groups dating back to the Late Glacial and for Neolithic and distinct Bronze Age migrations having further differentiated their gene pools. We inferred adaptive evolution at insulin-related loci in people from Italian regions with a temperate climate, while possible adaptations to pathogens and ultraviolet radiation were observed in Mediterranean Italians. Some of these adaptive events may also have secondarily modulated population disease or longevity predisposition. CONCLUSIONS: We disentangled the contribution of multiple migratory and adaptive events in shaping the heterogeneous Italian genomic background, which exemplify population dynamics and gene-environment interactions that played significant roles also in the formation of the Continental and Southern European genomic landscapes.


Assuntos
Evolução Molecular , Variação Genética , Genoma Humano , Arqueologia , DNA Antigo/análise , Humanos , Itália , População Branca
4.
Proteomics Clin Appl ; 16(5): e2100114, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35579096

RESUMO

PURPOSE: Studying the plasma proteome of control versus constitutionally thin (CT) individuals, exposed to overfeeding, may give insights into weight-gain management, providing relevant information to the clinical entity of weight-gain resistant CT, and discovering new markers for the condition. EXPERIMENTAL DESIGN: Untargeted protein relative quantification of 63 CT and normal-weight individuals was obtained in blood plasma at baseline, during and after an overfeeding challenge using mass spectrometry-based proteomics. RESULTS: The plasma proteome of CT subjects presented limited specificity with respect to controls at baseline. Yet, CT showed lower levels of inflammatory C-reactive protein and larger levels of protective insulin-like growth factor-binding protein 2. Differences were more marked during and after overfeeding. CT plasma proteome showed larger magnitude and significance in response, suggesting enhanced "resilience" and more rapid adaptation to changes. Four proteins behaved similarly between CT and controls, while five were regulated in opposite fashion. Ten proteins were differential during overfeeding in CT only (including increased fatty acid-binding protein and glyceraldehyde-3-phosphate dehydrogenase, and decreased apolipoprotein C-II and transferrin receptor protein 1). CONCLUSIONS AND CLINICAL RELEVANCE: This first proteomic profiling of a CT cohort reveals different plasma proteomes between CT subjects and controls in a longitudinal clinical trial. Our molecular observations further support that the resistance to weight gain in CT subjects appears predominantly biological. CLINICALTRIALS: gov Identifier: NCT02004821.


Assuntos
Proteômica , Somatomedinas , Proteína C-Reativa/metabolismo , Proteínas de Ligação a Ácido Graxo , Humanos , Plasma/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Receptores da Transferrina , Somatomedinas/metabolismo , Magreza/metabolismo
5.
Front Nutr ; 9: 998044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386937

RESUMO

Introduction and aims: Dietary polyphenols have long been associated with health benefits, including the prevention of obesity and related chronic diseases. Overfeeding was shown to rapidly induce weight gain and fat mass, associated with mild insulin resistance in humans, and thus represents a suitable model of the metabolic complications resulting from obesity. We studied the effects of a polyphenol-rich grape extract supplementation on the plasma metabolome during an overfeeding intervention in adults, in two randomized parallel controlled clinical trials. Methods: Blood plasma samples from 40 normal weight to overweight male adults, submitted to a 31-day overfeeding (additional 50% of energy requirement by a high calorie-high fructose diet), given either 2 g/day grape polyphenol extract or a placebo at 0, 15, 21, and 31 days were analyzed (Lyon study). Samples from a similarly designed trial on females (20 subjects) were collected in parallel (Lausanne study). Nuclear magnetic resonance (NMR)-based metabolomics was conducted to characterize metabolome changes induced by overfeeding and associated effects from polyphenol supplementation. The clinical trials are registered under the numbers NCT02145780 and NCT02225457 at ClinicalTrials.gov. Results: Changes in plasma levels of many metabolic markers, including branched chain amino acids (BCAA), ketone bodies and glucose in both placebo as well as upon polyphenol intervention were identified in the Lyon study. Polyphenol supplementation counterbalanced levels of BCAA found to be induced by overfeeding. These results were further corroborated in the Lausanne female study. Conclusion: Administration of grape polyphenol-rich extract over 1 month period was associated with a protective metabolic effect against overfeeding in adults.

6.
Sci Rep ; 11(1): 11992, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099811

RESUMO

Polymorphisms in genes related to the metabolism of vitamin B12 haven't been examined in a Brazilian population. To (a) determine the correlation between the local genetic ancestry components and vitamin B12 levels using ninety B12-related genes; (b) determine associations between these genes and their SNPs with vitamin B12 levels; (c) determine a polygenic risk score (PRS) using significant variants. This cross-sectional study included 168 children and adolescents, aged 9-13 years old. Total cobalamin was measured in plasma. Genotyping arrays and whole exome data were combined to yield ~ 7000 SNPs in 90 genes related to vitamin B12. The Efficient Local Ancestry Inference was used to estimate local ancestry for African (AFR), Native American, and European (EUR). The association between the genotypes and vitamin B12 levels were determined with generalized estimating equation. Vitamin B12 levels were driven by positive (EUR) and negative (AFR, AMR) correlations with genetic ancestry. A set of 36 variants were used to create a PRS that explained 42% of vitamin level variation. Vitamin B12 levels are influenced by genetic ancestry and a PRS explained almost 50% of the variation in plasma cobalamin in Brazilian children and adolescents.


Assuntos
Vitamina B 12/sangue , Vitamina B 12/metabolismo , Adolescente , Fatores Etários , Brasil , Criança , Estudos Transversais , Suplementos Nutricionais , Etnicidade , Feminino , Genoma Humano , Genótipo , Inquéritos Epidemiológicos , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Fatores de Risco
7.
Elife ; 102021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33941312

RESUMO

Extreme longevity is the paradigm of healthy aging as individuals who reached the extreme decades of human life avoided or largely postponed all major age-related diseases. In this study, we sequenced at high coverage (90X) the whole genome of 81 semi-supercentenarians and supercentenarians [105+/110+] (mean age: 106.6 ± 1.6) and of 36 healthy unrelated geographically matched controls (mean age 68.0 ± 5.9) recruited in Italy. The results showed that 105+/110+ are characterized by a peculiar genetic background associated with efficient DNA repair mechanisms, as evidenced by both germline data (common and rare variants) and somatic mutations patterns (lower mutation load if compared to younger healthy controls). Results were replicated in a second independent cohort of 333 Italian centenarians and 358 geographically matched controls. The genetics of 105+/110+ identified DNA repair and clonal haematopoiesis as crucial players for healthy aging and for the protection from cardiovascular events.


Assuntos
Hematopoiese Clonal/genética , Reparo do DNA , Longevidade/genética , Sequenciamento Completo do Genoma/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Patrimônio Genético , Humanos , Itália , Masculino , Pessoa de Meia-Idade , Mutação , Sequenciamento Completo do Genoma/métodos
8.
Hum Mol Genet ; 17(16): 2541-51, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18492799

RESUMO

Autism spectrum disorders (ASDs) are common, heritable, but genetically heterogeneous neurodevelopmental conditions. We recently defined a susceptibility locus for ASDs on chromosome 1q41-q42. High-resolution single-nucleotide polymorphisms (126 SNPs) genotyping across the chromosome 1q41-q42 region, followed by a MARK1 (microtubule affinity-regulating kinase 1)-tagged-SNP association study in 276 families with autism from the Autism Genetic Research Exchange, showed that several SNPs within the MARK1 gene were significantly associated with ASDs by transmission disequilibrium tests. Haplotype rs12740310*C-rs3737296*G-rs12410279*A was overtransmitted (P(corrected)= 0.0016), with a relative risk for autism of 1.8 in homozygous carriers. Furthermore, ASD-associated SNP rs12410279 modulates the level of transcription of MARK1. We found that MARK1 was overexpressed in the prefrontal cortex (BA46) but not in cerebellar granule cells, on postmortem brain tissues from patients. MARK1 displayed an accelerated evolution along the lineage leading to humans, suggesting possible involvement of this gene in cognition. MARK1 encodes a kinase-regulating microtubule-dependent transport in axons and dendrites. Both overexpression and silencing of MARK1 resulted in significantly shorter dendrite length in mouse neocortical neurons and modified dendritic transport speed. As expected for a gene encoding a key polarity determinant Par-1 protein kinase, MARK1 is involved in axon-dendrite specification. Thus, MARK1 overexpression in humans may be responsible for subtle changes in dendritic functioning.


Assuntos
Transtorno Autístico/enzimologia , Predisposição Genética para Doença , Proteínas Serina-Treonina Quinases/metabolismo , Adolescente , Adulto , Animais , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Linhagem Celular Tumoral , Polaridade Celular , Córtex Cerebelar/enzimologia , Córtex Cerebelar/fisiopatologia , Criança , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 1/genética , Dendritos/química , Dendritos/enzimologia , Dendritos/fisiologia , Evolução Molecular , Feminino , Expressão Gênica , Haplótipos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico
9.
Stat Med ; 29(22): 2359-68, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20623818

RESUMO

Diagnostic accuracy of a genetic test involving multiple disease genes is evaluated using sensitivity and specificity. For estimation, data from both affected and unaffected subjects are required. For early onset diseases, such as autism spectrum disorder (ASD), only data from families with affected offspring are available. To enable estimation of specificity when no data for unaffected offspring are available (single affected offspring, SAO, data), we combine the pseudocontrol method of Cordell and Clayton (Am. J. Hum. Genet. 2002; 70:124-141) with the approach of DeLong et al. (Biometrics 1985; 41:947-958) in a logistic regression model for disease outcome with a risk score (RS) constructed from genotype information as prognostic variable. The area under the receiver operating characteristic curve (AUC) is then computed using the non-parametric Mann-Whitney method. Extensive simulation studies show that, analogous to other approaches utilizing pseudocontrols, the resulting estimates of AUC using SAO data are slightly conservative when compared with the estimates computed using the full population-based data. The method is illustrated using data from a study of ASD.


Assuntos
Interpretação Estatística de Dados , Testes Genéticos/métodos , Modelos Logísticos , Modelos Genéticos , Adulto , Área Sob a Curva , Transtornos Globais do Desenvolvimento Infantil/genética , Pré-Escolar , Simulação por Computador , Família , Feminino , Humanos , Masculino , Curva ROC
10.
Diabetes Care ; 43(3): 653-660, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31915205

RESUMO

OBJECTIVE: Previous studies suggested that childhood prediabetes may develop prior to obesity and be associated with relative insulin deficiency. We proposed that the insulin-deficient phenotype is genetically determined and tested this hypothesis by longitudinal modeling of insulin and glucose traits with diabetes risk genotypes in the EarlyBird cohort. RESEARCH DESIGN AND METHODS: EarlyBird is a nonintervention prospective cohort study that recruited 307 healthy U.K. children at 5 years of age and followed them throughout childhood. We genotyped 121 single nucleotide polymorphisms (SNPs) previously associated with diabetes risk, identified in the adult population. Association of SNPs with fasting insulin and glucose and HOMA indices of insulin resistance and ß-cell function, available from 5 to 16 years of age, were tested. Association analysis with hormones was performed on selected SNPs. RESULTS: Several candidate loci influenced the course of glycemic and insulin traits, including rs780094 (GCKR), rs4457053 (ZBED3), rs11257655 (CDC123), rs12779790 (CDC123 and CAMK1D), rs1111875 (HHEX), rs7178572 (HMG20A), rs9787485 (NRG3), and rs1535500 (KCNK16). Some of these SNPs interacted with age, the growth hormone-IGF-1 axis, and adrenal and sex steroid activity. CONCLUSIONS: The findings that genetic markers influence both elevated and average courses of glycemic traits and ß-cell function in children during puberty independently of BMI are a significant step toward early identification of children at risk for diabetes. These findings build on our previous observations that pancreatic ß-cell defects predate insulin resistance in the onset of prediabetes. Understanding the mechanisms of interactions among genetic factors, puberty, and weight gain would allow the development of new and earlier disease-management strategies in children.


Assuntos
Glicemia/genética , Glicemia/metabolismo , Desenvolvimento Infantil/fisiologia , Resistência à Insulina/genética , Células Secretoras de Insulina/fisiologia , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Jejum/sangue , Feminino , Predisposição Genética para Doença , Genótipo , Teste de Tolerância a Glucose , Humanos , Insulina/genética , Masculino , Obesidade Infantil/sangue , Obesidade Infantil/epidemiologia , Obesidade Infantil/genética , Polimorfismo de Nucleotídeo Único , Estado Pré-Diabético/sangue , Estado Pré-Diabético/epidemiologia , Estado Pré-Diabético/genética , Estudos Prospectivos , Reino Unido/epidemiologia
11.
J Cachexia Sarcopenia Muscle ; 11(5): 1187-1199, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32274897

RESUMO

BACKGROUND: Constitutional thinness (CT), a non-malnourished underweight state with no eating disorders, is characterized by weight gain resistance to high fat diet. Data issued from muscle biopsies suggested blunted anabolic mechanisms in free-living state. Weight and metabolic responses to protein caloric supplementation has not been yet explored in CT. METHODS: A 2 week overfeeding (additional 600 kcal, 30 g protein, 72 g carbohydrate, and 21 g fat) was performed to compare two groups of CTs (12 women and 11 men) to normal-weight controls (12 women and 10 men). Bodyweight, food intake, energy expenditure, body composition, nitrogen balance, appetite hormones profiles, and urine metabolome were monitored before and after overfeeding. RESULTS: Before overfeeding, positive energy gap was found in both CT genders (309 ± 370 kcal in CT-F and 332 ± 709 kcal in CT-M) associated with higher relative protein intake per kilo (1.74 ± 0.32 g/kg/day in CT-F vs. 1.16 ± 0.23 in C-F, P < 0.0001; 1.56 ± 0.36 in CT-M vs. 1.22 ± 0.32 in C-M, P = 0.03), lower nitrogen (7.26 ± 2.36 g/day in CT-F vs. 11.41 ± 3.64 in C-F, P = 0.003; 9.70 ± 3.85 in CT-M vs. 14.14 ± 4.19 in C-M, P = 0.02), but higher essential amino acids urinary excretion (CT/C fold change of 1.13 for leucine and 1.14 for arginine) in free-living conditions. After overfeeding, CTs presented an accentuated positive energy gap, still higher than in controls (675 ± 540 in CTs vs. 379 ± 427 in C, P = 0.04). Increase in lean mass was induced in both controls genders but not in CTs (a trend was noticed in CT women), despite a similar nitrogen balance after overfeeding (5.06 ± 4.33 g/day in CTs vs. 4.28 ± 3.15 in controls, P = 0.49). Higher anorectic gut hormones' tone, glucagon-like peptide 1 and peptide tyrosine tyrosine, during test meal and higher snacking frequency were noticed before and after overfeeding in CTs. CONCLUSIONS: The blunted muscle energy mechanism, previously described in CTs in free-living state, is associated with basal saturated protein turn over suggested by the concordance of positive nitrogen balance and an increased urine excretion of several essential amino acids. This saturation cannot be overpassed by increasing this spontaneous high-protein intake suggesting a resistance to lean mass gain in CT phenotype.


Assuntos
Condições Sociais , Magreza , Adolescente , Composição Corporal , Metabolismo Energético , Feminino , Humanos , Masculino , Aumento de Peso , Adulto Jovem
12.
Am J Clin Nutr ; 109(6): 1499-1510, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30869115

RESUMO

BACKGROUND: The adipose tissue (AT) is a secretory organ producing a wide variety of factors that participate in the genesis of metabolic disorders linked to excess fat mass. Weight loss improves obesity-related disorders. OBJECTIVES: Transcriptomic studies on human AT, and a combination of analyses of transcriptome and proteome profiling of conditioned media from adipocytes and stromal cells isolated from human AT, have led to the identification of apolipoprotein M (apoM) as a putative adipokine. We aimed to validate apoM as novel adipokine, investigate the relation of AT APOM expression with metabolic syndrome and insulin sensitivity, and study the regulation of its expression in AT and secretion during calorie restriction-induced weight loss. METHODS: We examined APOM mRNA level and secretion in AT from 485 individuals enrolled in 5 independent clinical trials, and in vitro in human multipotent adipose-derived stem cell adipocytes. APOM expression and secretion were measured during dieting. RESULTS: APOM was expressed in human subcutaneous and visceral AT, mainly by adipocytes. ApoM was released into circulation from AT, and plasma apoM concentrations correlate with AT APOM mRNA levels. In AT, APOM expression inversely correlated with adipocyte size, was lower in obese compared to lean individuals, and reduced in subjects with metabolic syndrome and type 2 diabetes. Regardless of fat depot, there was a positive relation between AT APOM expression and systemic insulin sensitivity, independently of fat mass and plasma HDL cholesterol. In human multipotent adipose-derived stem cell adipocytes, APOM expression was enhanced by insulin-sensitizing peroxisome proliferator-activated receptor agonists and inhibited by tumor necrosis factor α, a cytokine that causes insulin resistance. In obese individuals, calorie restriction increased AT APOM expression and secretion. CONCLUSIONS: ApoM is a novel adipokine, the expression of which is a hallmark of healthy AT and is upregulated by calorie restriction. AT apoM deserves further investigation as a potential biomarker of risk for diabetes and cardiovascular diseases.


Assuntos
Adipocinas/genética , Apolipoproteínas M/genética , Obesidade/dietoterapia , Obesidade/genética , Adipócitos/metabolismo , Adipocinas/metabolismo , Apolipoproteínas M/metabolismo , Restrição Calórica , Ensaios Clínicos como Assunto , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Obesidade/metabolismo
13.
Am J Clin Nutr ; 110(3): 605-616, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31374571

RESUMO

BACKGROUND: Constitutional thinness (CT) is a state of low but stable body weight (BMI ≤18 kg/m2). CT subjects have normal-range hormonal profiles and food intake but exhibit resistance to weight gain despite living in the modern world's obesogenic environment. OBJECTIVE: The goal of this study is to identify molecular mechanisms underlying this protective phenotype against weight gain. METHODS: We conducted a clinical overfeeding study on 30 CT subjects and 30 controls (BMI 20-25 kg/m2) matched for age and sex. We performed clinical and integrative molecular and transcriptomic analyses on white adipose and muscle tissues. RESULTS: Our results demonstrate that adipocytes were markedly smaller in CT individuals (mean ± SEM: 2174 ± 142 µm 2) compared with controls (3586 ± 216 µm2) (P < 0.01). The mitochondrial respiratory capacity was higher in CT adipose tissue, particularly at the level of complex II of the electron transport chain (2.2-fold increase; P < 0.01). This higher activity was paralleled by an increase in mitochondrial number (CT compared with control: 784 ± 27 compared with 675 ± 30 mitochondrial DNA molecules per cell; P < 0.05). No evidence for uncoupled respiration or "browning" of the white adipose tissue was found. In accordance with the mitochondrial differences, CT subjects had a distinct adipose transcriptomic profile [62 differentially expressed genes (false discovery rate of 0.1 and log fold change >0.75)], with many differentially expressed genes associating with positive metabolic outcomes. Pathway analyses revealed an increase in fatty acid oxidation ( P = 3 × 10-04) but also triglyceride biosynthesis (P = 3.6 × 10-04). No differential response to the overfeeding was observed in the 2 groups. CONCLUSIONS: The distinct molecular signature of the adipose tissue in CT individuals suggests the presence of augm ented futile lipid cycling, rather than mitochondrial uncoupling, as a way to increase energy expenditure in CT individuals. We propose that increased mitochondrial function in adipose tissue is an important mediator in sustaining the low body weight in CT individuals. This knowledge could ultimately allow more targeted approaches for weight management treatment strategies. This trial was registered at clinicaltrials.gov as NCT02004821.


Assuntos
Tecido Adiposo Branco/metabolismo , Mitocôndrias/metabolismo , Magreza/metabolismo , Adipócitos Brancos/fisiologia , Adulto , Estudos de Casos e Controles , Ingestão de Energia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Fatores de Tempo , Transcriptoma , Adulto Jovem
14.
Nat Commun ; 10(1): 540, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30710084

RESUMO

Hundreds of genetic variants have been associated with Body Mass Index (BMI) through genome-wide association studies (GWAS) using observational cohorts. However, the genetic contribution to efficient weight loss in response to dietary intervention remains unknown. We perform a GWAS in two large low-caloric diet intervention cohorts of obese participants. Two loci close to NKX6.3/MIR486 and RBSG4 are identified in the Canadian discovery cohort (n = 1166) and replicated in the DiOGenes cohort (n = 789). Modulation of HGTX (NKX6.3 ortholog) levels in Drosophila melanogaster leads to significantly altered triglyceride levels. Additional tissue-specific experiments demonstrate an action through the oenocytes, fly hepatocyte-like cells that regulate lipid metabolism. Our results identify genetic variants associated with the efficacy of weight loss in obese subjects and identify a role for NKX6.3 in lipid metabolism, and thereby possibly weight control.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Redução de Peso/genética , Adulto , Animais , Teorema de Bayes , Estudos de Coortes , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Feminino , Proteínas de Homeodomínio/genética , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Fatores de Transcrição/genética , Triglicerídeos/metabolismo
15.
Genes Nutr ; 13: 7, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29619113

RESUMO

BACKGROUND: Angiopoietin-like protein 3 (ANGPTL3), a liver-derived protein, plays an important role in the lipid and lipoprotein metabolism. Using data available from the DiOGenes study, we assessed the link with clinical improvements (weight, plasma lipid, and insulin levels) and changes in liver markers, alanine aminotransferase, aspartate aminotransferase (AST), adiponectin, fetuin A and B, and cytokeratin 18 (CK-18), upon low-calorie diet (LCD) intervention. We also examined the role of genetic variation in determining the level of circulating ANGPTL3 and the relation between the identified genetic markers and markers of hepatic steatosis. METHODS: DiOGenes is a multicenter, controlled dietary intervention where obese participants followed an 8-week LCD (800 kcal/day, using a meal replacement product). Plasma ANGPTL3 and liver markers were measured using the SomaLogic (Boulder, CO) platform. Protein quantitative trait locus (pQTL) analyses assessed the link between more than four million common variants and the level of circulating ANGPTL3 at baseline and changes in levels during the LCD intervention. RESULTS: Changes in ANGPTL3 during weight loss showed only marginal association with changes in triglycerides (nominal p = 0.02) and insulin (p = 0.04); these results did not remain significant after correcting for multiple testing. However, significant association (after multiple-testing correction) were observed between changes in ANGPTL3 and AST during weight loss (p = 0.004) and between ANGPTL3 and CK-18 (baseline p = 1.03 × 10-7, during weight loss p = 1.47 × 10-13). Our pQTL study identified two loci significantly associated with changes in ANGPTL3. One of these loci (the APOA4-APOA5-ZNF259-BUD13 gene cluster) also displayed significant association with changes in CK-18 levels during weight loss (p = 0.007). CONCLUSION: We clarify the link between circulating levels of ANGPTL3 and specific markers of liver function. We demonstrate that changes in ANGPLT3 and CK-18 during LCD are under genetic control from trans-acting variants. Our results suggest an extended function of ANGPTL3 in the inflammatory state of liver steatosis and toward liver metabolic processes.

16.
Mol Nutr Food Res ; 62(6): e1700613, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29368422

RESUMO

SCOPE: Micronutrients are in small amounts in foods, act in concert, and require variable amounts of time to see changes in health and risk for disease. These first principles are incorporated into an intervention study designed to develop new experimental strategies for setting target recommendations for food bioactives for populations and individuals. METHODS AND RESULTS: A 6-week multivitamin/mineral intervention is conducted in 9-13 year olds. Participants (136) are (i) their own control (n-of-1); (ii) monitored for compliance; (iii) measured for 36 circulating vitamin forms, 30 clinical, anthropometric, and food intake parameters at baseline, post intervention, and following a 6-week washout; and (iv) had their ancestry accounted for as modifier of vitamin baseline or response. The same intervention is repeated the following year (135 participants). Most vitamins respond positively and many clinical parameters change in directions consistent with improved metabolic health to the intervention. Baseline levels of any metabolite predict its own response to the intervention. Elastic net penalized regression models are identified, and significantly predict response to intervention on the basis of multiple vitamin/clinical baseline measures. CONCLUSIONS: The study design, computational methods, and results are a step toward developing recommendations for optimizing vitamin levels and health parameters for individuals.


Assuntos
Micronutrientes/administração & dosagem , Vitaminas/sangue , Adolescente , Criança , Dislipidemias/sangue , Comportamento Alimentar , Feminino , Humanos , Individualidade , Masculino
17.
Eur J Hum Genet ; 15(8): 831-6, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17473834

RESUMO

Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant syndrome caused by germline mutations of the mismatch repair (MMR) genes. Only a few studies have taken into account the selection of families tested for these mutations in estimating colorectal cancer (CRC) risk in carriers. They found much lower estimates of CRC risks than previous ones, but these estimates lacked precision despite the large number of families. The aim of this study was to evaluate the efficiency of the 'genotype restricted likelihood' (GRL) method that provides unbiased estimates of risks whatever the ascertainment process of families, and to estimate CRC and endometrial cancer risk for carriers of the MMR genes. Efficiency of the GRL method was evaluated using simulations. Risks were estimated from a sample of 36 families diagnosed with HNPCC and carrying a mutation of MSH2 or MLH1, ascertained through a cancer family clinic in Lyon (France). The efficiency of the GRL method was found to be strongly dependent on the proportion of family members tested. By age 70 years, CRC risk was estimated at 47% (95% confidence interval: 12-98%) for men and 33% (95% confidence interval: 24-54%) for women. The endometrial cancer risk was only 14% (confidence interval: 6-20%). As methods allowing for the selection of families lack efficiency, large-scale family studies should be undertaken and data should be pooled to provide reliable and precise estimates of risks for an optimal familial management.


Assuntos
Neoplasias Colorretais Hereditárias sem Polipose/genética , Predisposição Genética para Doença , Funções Verossimilhança , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Colorretais Hereditárias sem Polipose/epidemiologia , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Medição de Risco
18.
BMC Med Genet ; 8: 74, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-18053270

RESUMO

BACKGROUND: Autism is a complex, heterogeneous, behaviorally-defined disorder characterized by disruptions of the nervous system and of other systems such as the pituitary-hypothalamic axis. In a previous genome wide screen, we reported linkage of autism with a 1.2 Megabase interval on chromosome 5q31. For the current study, we hypothesized that 3 of the genes in this region could be involved in the development of autism: 1) paired-like homeodomain transcription factor 1 (PITX1), which is a key regulator of hormones within the pituitary-hypothalamic axis, 2) neurogenin 1, a transcription factor involved in neurogenesis, and 3) histone family member Y (H2AFY), which is involved in X-chromosome inactivation in females and could explain the 4:1 male:female gender distortion present in autism. METHODS: A total of 276 families from the Autism Genetic Resource Exchange (AGRE) repository composed of 1086 individuals including 530 affected children were included in the study. Single nucleotide polymorphisms tagging the three candidate genes were genotyped on the initial linkage sample of 116 families. A second step of analysis was performed using tightly linked SNPs covering the PITX1 gene. Association was evaluated using the FBAT software version 1.7.3 for single SNP analysis and the HBAT command from the same package for haplotype analysis respectively. RESULTS: Association between SNPs and autism was only detected for PITX1. Haplotype analysis within PITX1 showed evidence for overtransmission of the A-C haplotype of markers rs11959298 - rs6596189 (p = 0.0004). Individuals homozygous or heterozygous for the A-C haplotype risk allele were 2.54 and 1.59 fold more likely to be autistic than individuals who were not carrying the allele, respectively. CONCLUSION: Strong and consistent association was observed between a 2 SNPs within PITX1 and autism. Our data suggest that PITX1, a key regulator of hormones within the pituitary-hypothalamic axis, may be implicated in the etiology of autism.


Assuntos
Transtorno Autístico/genética , Cromossomos Humanos Par 5/genética , Fatores de Transcrição Box Pareados/genética , Polimorfismo de Nucleotídeo Único , Transtorno Autístico/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Estudos de Casos e Controles , Criança , Análise Mutacional de DNA , Feminino , Frequência do Gene , Genes Homeobox/genética , Ligação Genética/genética , Marcadores Genéticos , Predisposição Genética para Doença , Haplótipos/genética , Histonas/genética , Humanos , Masculino , Herança Multifatorial/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Box Pareados/metabolismo , Mutação Puntual/genética , Distribuição por Sexo , Irmãos
19.
J Clin Endocrinol Metab ; 102(8): 2751-2761, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28482007

RESUMO

Context: Although calorie restriction has proven beneficial for weight loss, long-term weight control is variable between individuals. Objective: To identify biomarkers of successful weight control during a dietary intervention (DI). Design, Setting, and Participants: Adipose tissue (AT) transcriptomes were compared between 21 obese individuals who either maintained weight loss or regained weight during the DI. Results were validated on 310 individuals from the same study using quantitative reverse transcription polymerase chain reaction and protein levels of potential circulating biomarkers measured by enzyme-linked immunosorbent assay. Intervention: Individuals underwent 8 weeks of low-calorie diet, then 6 months of ad libitum diet. Outcome Measure: Weight changes at the end of the DI. Results: We evaluated six genes that had altered expression during DI, encode secreted proteins, and have not previously been implicated in weight control (EGFL6, FSTL3, CRYAB, TNMD, SPARC, IGFBP3), as well as genes for which baseline expression differed between those with good and poor weight control (ASPN, USP53). Changes in plasma concentrations of EGFL6, FSTL3, and CRYAB mirrored AT messenger RNA expression; all decreased during DI in individuals with good weight control. ASPN and USP53 had higher baseline expression in individuals who went on to have good weight control. Expression quantitative trait loci analysis found polymorphisms associated with expression levels of USP53 in AT. A regulatory network was identified in which transforming growth factor ß1 (TGF-ß1) was responsible for downregulation of certain genes during DI in good controllers. Interestingly, ASPN is a TGF-ß1 inhibitor. Conclusions: We found circulating biomarkers associated with weight control that could influence weight management strategies and genes that may be prognostic for successful weight control.


Assuntos
Restrição Calórica , Obesidade/dietoterapia , RNA Mensageiro/metabolismo , Gordura Subcutânea/metabolismo , Adulto , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio , Moléculas de Adesão Celular , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Proteínas Relacionadas à Folistatina/genética , Proteínas Relacionadas à Folistatina/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Análise em Microsséries , Pessoa de Meia-Idade , Obesidade/genética , Obesidade/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Polimorfismo Genético , Locos de Características Quantitativas , Reação em Cadeia da Polimerase em Tempo Real , Fator de Crescimento Transformador beta1/metabolismo , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Cadeia B de alfa-Cristalina/genética , Cadeia B de alfa-Cristalina/metabolismo
20.
J Nutr Metab ; 2017: 4535710, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29225968

RESUMO

INTRODUCTION: The domesticated dog, Canis lupus familiaris, has been selectively bred to produce extreme diversity in phenotype and genotype. Dogs have an immense diversity in weight and height. Specific differences in metabolism have not been characterized in small dogs as compared to larger dogs. OBJECTIVES: This study aims to identify metabolic, clinical, and microbiota differences between small and larger dogs. METHODS: Gas chromatography/mass spectrometry, liquid chromatography/tandem mass spectrometry, clinical chemistry analysis, dual-energy X-ray absorptiometry, and 16S pyrosequencing were used to characterize blood metabolic, clinical, and fecal microbiome systems, respectively. Eighty-three canines from seven different breeds, fed the same kibble diet for 5 weeks, were used in the study. RESULTS: 449 metabolites, 16 clinical parameters, and 6 bacteria (at the genus level) were significantly different between small and larger dogs. Hierarchical clustering of the metabolites yielded 8 modules associated with small dog size. CONCLUSION: Small dogs had a lower antioxidant status and differences in circulating amino acids. Some of the amino acid differences could be attributed to differences in microflora. Additionally, analysis of small dog metabolites and clinical parameters reflected a network which strongly associates with kidney function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA