Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 22(6): 2329-2345, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32249550

RESUMO

Serpentinization is the hydration and oxidation of ultramafic rock, which occurs as oceanic lithosphere is emplaced onto continental margins (ophiolites), and along the seafloor as faulting exposes this mantle-derived material to circulating hydrothermal fluids. This process leads to distinctive fluid chemistries as molecular hydrogen (H2 ) and hydroxyl ions (OH- ) are produced and reduced carbon compounds are mobilized. Serpentinizing ophiolites also serve as a vector to transport sulfur compounds from the seafloor onto the continents. We investigated hyperalkaline, sulfur-rich, brackish groundwater in a serpentinizing continental ophiolite to elucidate the role of sulfur compounds in fuelling in situ microbial activities. Here we illustrate that key sulfur-cycling taxa, including Dethiobacter, Desulfitispora and 'Desulforudis', persist throughout this extreme environment. Biologically catalysed redox reactions involving sulfate, sulfide and intermediate sulfur compounds are thermodynamically favourable in the groundwater, which indicates they may be vital to sustaining life in these characteristically oxidant- and energy-limited systems. Furthermore, metagenomic and metatranscriptomic analyses reveal a complex network involving sulfate reduction, sulfide oxidation and thiosulfate reactions. Our findings highlight the importance of the complete inorganic sulfur cycle in serpentinizing fluids and suggest sulfur biogeochemistry provides a key link between terrestrial serpentinizing ecosystems and their submarine heritage.


Assuntos
Fenômenos Geológicos , Compostos de Enxofre/metabolismo , Microbiologia da Água , Microbiota , Oxirredução , Enxofre
2.
Extremophiles ; 22(3): 407-431, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29450709

RESUMO

Terrestrial serpentinizing systems harbor microbial subsurface life. Passive or active microbially mediated iron transformations at alkaline conditions in deep biosphere serpentinizing ecosystems are understudied. We explore these processes in the Zambales (Philippines) and Coast Range (CA, USA) ophiolites, and associated surface ecosystems by probing the relevance of samples acquired at the surface to in situ, subsurface ecosystems, and the nature of microbe-mineral associations in the subsurface. In this pilot study, we use microcosm experiments and batch culturing directed at iron redox transformations to confirm thermodynamically based predictions that iron transformations may be important in subsurface serpentinizing ecosystems. Biofilms formed on rock cores from the Zambales ophiolite on surface and in-pit associations, confirming that organisms from serpentinizing systems can form biofilms in subsurface environments. Analysis by XPS and FTIR confirmed that enrichment culturing utilizing ferric iron growth substrates produced reduced, magnetic solids containing siderite, spinels, and FeO minerals. Microcosms and enrichment cultures supported organisms whose near relatives participate in iron redox transformations. Further, a potential 'principal' microbial community common to solid samples in serpentinizing systems was identified. These results indicate collectively that iron redox transformations should be more thoroughly and universally considered when assessing the function of terrestrial subsurface ecosystems driven by serpentinization.


Assuntos
Biofilmes , Sedimentos Geológicos/microbiologia , Água Subterrânea/microbiologia , Ferro/metabolismo , Microbiota , Biotransformação , Sedimentos Geológicos/química , Água Subterrânea/química , Oxirredução
3.
Life (Basel) ; 13(12)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38137950

RESUMO

We provide new support for habitable microenvironments in the near-subsurface of Mars, hosted in Fe- and Mg-rich rock units, and present a list of minerals that can serve as indicators of specific water-rock reactions in recent geologic paleohabitats for follow-on study. We modeled, using a thermodynamic basis without selective phase suppression, the reactions of published Martian meteorites and Jezero Crater igneous rock compositions and reasonable planetary waters (saline, alkaline waters) using Geochemist's Workbench Ver. 12.0. Solid-phase inputs were meteorite compositions for ALH 77005, Nakhla, and Chassigny, and two rock units from the Mars 2020 Perseverance rover sites, Máaz and Séítah. Six plausible Martian groundwater types [NaClO4, Mg(ClO4)2, Ca(ClO4)2, Mg-Na2(ClO4)2, Ca-Na2(ClO4)2, Mg-Ca(ClO4)2] and a unique Mars soil-water analog solution (dilute saline solution) named "Rosy Red", related to the Phoenix Lander mission, were the aqueous-phase inputs. Geophysical conditions were tuned to near-subsurface Mars (100 °C or 373.15 K, associated with residual heat from a magmatic system, impact event, or a concentration of radionuclides, and 101.3 kPa, similar to <10 m depth). Mineral products were dominated by phyllosilicates such as serpentine-group minerals in most reaction paths, but differed in some important indicator minerals. Modeled products varied in physicochemical properties (pH, Eh, conductivity), major ion activities, and related gas fugacities, with different ecological implications. The microbial habitability of pore spaces in subsurface groundwater percolation systems was interrogated at equilibrium in a thermodynamic framework, based on Gibbs Free Energy Minimization. Models run with the Chassigny meteorite produced the overall highest H2 fugacity. Models reliant on the Rosy Red soil-water analog produced the highest sustained CH4 fugacity (maximum values observed for reactant ALH 77005). In general, Chassigny meteorite protoliths produced the best yield regarding Gibbs Free Energy, from an astrobiological perspective. Occurrences of serpentine and saponite across models are key: these minerals have been observed using CRISM spectral data, and their formation via serpentinization would be consistent with geologically recent-past H2 and CH4 production and sustained energy sources for microbial life. We list index minerals to be used as diagnostic for paleo water-rock models that could have supported geologically recent-past microbial activity, and suggest their application as criteria for future astrobiology study-site selections.

4.
mSystems ; 6(5): e0030021, 2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34519519

RESUMO

In recent years, our appreciation of the extent of habitable environments in Earth's subsurface has greatly expanded, as has our understanding of the biodiversity contained within. Most studies have relied on single sampling points, rather than considering the long-term dynamics of subsurface environments and their microbial populations. One such habitat are aquifers associated with the aqueous alteration of ultramafic rocks through a process known as serpentinization. Ecological modeling performed on a multiyear time series of microbiology, hydrology, and geochemistry in an ultrabasic aquifer within the Coast Range Ophiolite reveals that community assembly is governed by undominated assembly (i.e., neither stochastic [random] nor deterministic [selective] processes alone govern assembly). Controls on community assembly were further assessed by characterizing aquifer hydrogeology and microbial community adaptations to the environment. These analyses show that low permeability rocks in the aquifer restrict the transmission of microbial populations between closely situated wells. Alpha and beta diversity measures and metagenomic and metatranscriptomic data from microbial communities indicate that high pH and low dissolved inorganic carbon levels impose strong environmental selection on microbial communities within individual wells. Here, we find that the interaction between strong selection imposed by extreme pH and enhanced ecological drift due to dispersal limitation imposed by slow fluid flow results in the undominated assembly signal observed throughout the site. Strong environmental selection paired with extremely low dispersal in the subsurface results in low diversity microbial communities that are well adapted to extreme pH conditions and subject to enhanced stochasticity introduced by ecological drift over time. IMPORTANCE Microbial communities existing under extreme or stressful conditions have long been thought to be structured primarily by deterministic processes. The application of macroecology theory and modeling to microbial communities in recent years has spurred assessment of assembly processes in microbial communities, revealing that both stochastic and deterministic processes are at play to different extents within natural environments. We show that low diversity microbial communities in a hard-rock serpentinizing aquifer are assembled under the influence of strong selective processes imposed by high pH and enhanced ecological drift that occurs as the result of dispersal limitation due to the slow movement of water in the low permeability aquifer. This study demonstrates the important roles that both selection and dispersal limitation play in terrestrial serpentinites, where extreme pH assembles a microbial metacommunity well adapted to alkaline conditions and dispersal limitation drives compositional differences in microbial community composition between local communities in the subsurface.

5.
mSystems ; 5(2)2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-32156795

RESUMO

Serpentinization is a low-temperature metamorphic process by which ultramafic rock chemically reacts with water. Such reactions provide energy and materials that may be harnessed by chemosynthetic microbial communities at hydrothermal springs and in the subsurface. However, the biogeochemistry mediated by microbial populations that inhabit these environments is understudied and complicated by overlapping biotic and abiotic processes. We applied metagenomics, metatranscriptomics, and untargeted metabolomics techniques to environmental samples taken from the Coast Range Ophiolite Microbial Observatory (CROMO), a subsurface observatory consisting of 12 wells drilled into the ultramafic and serpentinite mélange of the Coast Range Ophiolite in California. Using a combination of DNA and RNA sequence data and mass spectrometry data, we found evidence for several carbon fixation and assimilation strategies, including the Calvin-Benson-Bassham cycle, the reverse tricarboxylic acid cycle, the reductive acetyl coenzyme A (acetyl-CoA) pathway, and methylotrophy, in the microbial communities inhabiting the serpentinite-hosted aquifer. Our data also suggest that the microbial inhabitants of CROMO use products of the serpentinization process, including methane and formate, as carbon sources in a hyperalkaline environment where dissolved inorganic carbon is unavailable.IMPORTANCE This study describes the potential metabolic pathways by which microbial communities in a serpentinite-influenced aquifer may produce biomass from the products of serpentinization. Serpentinization is a widespread geochemical process, taking place over large regions of the seafloor and at continental margins, where ancient seafloor has accreted onto the continents. Because of the difficulty in delineating abiotic and biotic processes in these environments, major questions remain related to microbial contributions to the carbon cycle and physiological adaptation to serpentinite habitats. This research explores multiple mechanisms of carbon fixation and assimilation in serpentinite-hosted microbial communities.

6.
Front Microbiol ; 10: 761, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31118921

RESUMO

Springs hosted in ophiolites are often affected by serpentinization processes. The characteristically low DIC and high CH4 and H2 gas concentrations of serpentinizing ecosystems have led to interest in hydrogen based metabolisms in these subsurface biomes. However, a true subsurface signature can be difficult to identify in surface expressions such as serpentinizing springs. Here, we explore carbon and nitrogen resources in serpentinization impacted springs in the tropical climate of the Zambales and Palawan ophiolites in the Philippines, with a focus on surface vs. subsurface processes and exogenous vs. endogenous nutrient input. Isotopic signatures in spring fluids, biomass, and carbonates were examined to identify sources and sinks of carbon and nitrogen, carbonate geochemistry, and the effect of seasonal precipitation. Seasonality affected biomass production in both low flow and high flow spring systems. Changes in meteorological precipitation affected δ13CDIC and δ13CDOC values of the spring fluids, which reflected seasonal gain/loss of atmospheric influence and changes in exogenous DOC input. The primary carbon source in high flow systems was variable, with DOC contributing to biomass in many springs, and a mix of DIC and carbonates contributing to biomass in select locations. However, primary carbon resources in low flow systems may depend more on endogenous than exogenous carbon, even in high precipitation seasons. Isotopic evidence for nitrogen fixation was identified, with seasonal influence only seen in low flow systems. Carbonate formation was found to occur as a mixture of recrystallization/recycling of older carbonates and rapid mineral precipitation (depending on the system), with highly δ13C and δ18O depleted carbonates occurring in many locations. Subsurface signatures (e.g., low DOC influence on Cbiomass) were most apparent in the driest seasons and lowest flow systems, indicating locations where metabolic processes divorced from surface influences (including hydrogen based metabolisms) are most likely to be occurring.

7.
Front Microbiol ; 8: 308, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28298908

RESUMO

Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H2 and CH4) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments.

8.
Front Microbiol ; 6: 44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25745416

RESUMO

In the Zambales ophiolite range, terrestrial serpentinizing fluid seeps host diverse microbial assemblages. The fluids fall within the profile of Ca(2+)-OH(-)-type waters, indicative of active serpentinization, and are low in dissolved inorganic carbon (DIC) (<0.5 ppm). Influx of atmospheric carbon dioxide (CO2) affects the solubility of calcium carbonate as distance from the source increases, triggering the formation of meter-scale travertine terraces. Samples were collected at the source and along the outflow channel to determine subsurface microbial community response to surface exposure. DNA was extracted and submitted for high-throughput 16S rRNA gene sequencing on the Illumina MiSeq platform. Taxonomic assignment of the sequence data indicates that 8.1% of the total sequence reads at the source of the seep affiliate with the genus Methanobacterium. Other major classes detected at the source include anaerobic taxa such as Bacteroidetes (40.7% of total sequence reads) and Firmicutes (19.1% of total reads). Hydrogenophaga spp. increase in relative abundance as redox potential increases. At the carbonate terrace, 45% of sequence reads affiliate with Meiothermus spp. Taxonomic observations and geochemical data suggest that several putative metabolisms may be favorable, including hydrogen oxidation, H2-associated sulfur cycling, methanogenesis, methanotrophy, nitrogen fixation, ammonia oxidation, denitrification, nitrate respiration, methylotrophy, carbon monoxide respiration, and ferrous iron oxidation, based on capabilities of nearest known neighbors. Scanning electron microscopy and energy dispersive X-ray spectroscopy suggest that microbial activity produces chemical and physical traces in the precipitated carbonates forming downstream of the seep's source. These data provide context for future serpentinizing seep ecosystem studies, particularly with regards to tropical biomes.

9.
Front Microbiol ; 6: 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25713561

RESUMO

A field campaign targeting high pH, H2-, and CH4-emitting serpentinite-associated springs in the Zambales and Palawan Ophiolites of the Philippines was conducted in 2012-2013, and enabled description of several springs sourced in altered pillow basalts, gabbros, and peridotites. We combine field observations of pH, temperature, conductivity, dissolved oxygen, and oxidation-reduction potential with analyses of major ions, dissolved inorganic carbon, dissolved organic carbon, and dissolved gas phases in order to model the activities of selected phases important to microbial metabolism, and to rank feasible metabolic reactions based on energy yield. We document changing geochemical inventories in these springs between sampling years, and examine how the environment supports or prevents the function of certain microbial metabolisms. In all, this geochemistry-based assessment of feasible metabolisms indicates methane cycling, hydrogen oxidation, some iron and sulfur metabolisms, and ammonia oxidation are feasible reactions in this continental site of serpentinization.

10.
Science ; 348(6233): 428-31, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25745067

RESUMO

Methane is a key component in the global carbon cycle, with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply substituted "clumped" isotopologues (for example, (13)CH3D) has recently emerged as a proxy for determining methane-formation temperatures. However, the effect of biological processes on methane's clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on (13)CH3D abundances and results in anomalously elevated formation-temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.


Assuntos
Ciclo do Carbono , Metano/biossíntese , Methanomicrobiales/metabolismo , Animais , Isótopos de Carbono/química , Bovinos , Água Subterrânea/química , Hidrogênio/química , Metano/química , Temperatura
11.
Front Microbiol ; 5: 723, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25646094

RESUMO

Gas seeps emanating from Yanartas (Chimera), Turkey, have been documented for thousands of years. Active serpentinization produces hydrogen and a range of carbon gases that may provide fuel for life. Here we report a newly discovered, ephemeral fluid seep emanating from a small gas vent at Yanartas. Fluids and biofilms were sampled at the source and points downstream. We describe site conditions, and provide microbiological data in the form of enrichment cultures, Scanning electron microscopy (SEM), carbon and nitrogen isotopic composition of solids, and PCR screens of nitrogen cycle genes. Source fluids are pH 11.95, with a Ca:Mg of ~200, and sediments under the ignited gas seep measure 60°C. Collectively, these data suggest the fluid is the product of active serpentinization at depth. Source sediments are primarily calcite and alteration products (chlorite and montmorillonite). Downstream, biofilms are mixed with montmorillonite. SEM shows biofilms distributed homogeneously with carbonates. Organic carbon accounts for 60% of the total carbon at the source, decreasing downstream to <15% as inorganic carbon precipitates. δ(13)C ratios of the organic carbon fraction of solids are depleted (-25 to -28‰) relative to the carbonates (-11 to -20‰). We conclude that heterotrophic processes are dominant throughout the surface ecosystem, and carbon fixation may be key down channel. δ(15)N ratios ~3‰, and absence of nifH in extracted DNA suggest that nitrogen fixation is not occurring in sediments. However, the presence of narG and nirS at most locations and in enrichments indicates genomic potential for nitrate and nitrite reduction. This small seep with shallow run-off is likely ephemeral, but abundant preserved microterracettes in the outflow and the surrounding area suggest it has been present for some time. This site and others like it present an opportunity for investigations of preserved deep biosphere signatures, and subsurface-surface interactions.

12.
Front Microbiol ; 5: 604, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25452748

RESUMO

Geochemical reactions associated with serpentinization alter the composition of dissolved organic compounds in circulating fluids and potentially liberate mantle-derived carbon and reducing power to support subsurface microbial communities. Previous studies have identified Betaproteobacteria from the order Burkholderiales and bacteria from the order Clostridiales as key components of the serpentinite-hosted microbiome, however there is limited knowledge of their metabolic capabilities or growth characteristics. In an effort to better characterize microbial communities, their metabolism, and factors limiting their activities, microcosm experiments were designed with fluids collected from several monitoring wells at the Coast Range Ophiolite Microbial Observatory (CROMO) in northern California during expeditions in March and August 2013. The incubations were initiated with a hydrogen atmosphere and a variety of carbon sources (carbon dioxide, methane, acetate, and formate), with and without the addition of nutrients and electron acceptors. Growth was monitored by direct microscopic counts; DNA yield and community composition was assessed at the end of the 3 month incubation. For the most part, results indicate that bacterial growth was favored by the addition of acetate and methane, and that the addition of nutrients and electron acceptors had no significant effect on microbial growth, suggesting no nutrient- or oxidant-limitation. However, the addition of sulfur amendments led to different community compositions. The dominant organisms at the end of the incubations were closely related to Dethiobacter sp. and to the family Comamonadaceae, which are also prominent in culture-independent gene sequencing surveys. These experiments provide one of first insights into the biogeochemical dynamics of the serpentinite subsurface environment and will facilitate experiments to trace microbial activities in serpentinizing ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA