Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(36): 16702-16712, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39194319

RESUMO

This study validates a computational protocol to predict the stability of heterodinuclear complexes by varying ligands on both moieties and analyzing the reaction Gibbs free energy (ΔGr) values. To this purpose, a series of Eu-Al complexes with the general formula [Eu(LEu)3Al(LAl)3], where LEu is the ligand of europium and LAl is an oxygen donor ligand of aluminum, is used. The nature of the bridging bonds and thermochemical characteristics (ΔGr, enthalpy, and entropy) of the complexes were evaluated via DFT calculations. We demonstrated that both entropic and enthalpic effects play a relevant role in the stability. The analysis of the series allows us to identify three ΔGr ranges where heterodinuclear complexes are (i) stable and easy to characterize, (ii) fragile and difficult to characterize, and (iii) not observed (unreacted precursors are recovered). To rationalize the trend of the stability and correlate it with the chemical nature of the ligands, we investigated the condensed Fukui function on the Al fragment. Results suggest that to obtain stable heteronuclear complexes, it is necessary to consider ligands with small condensed Fukui function values. This corresponds to a less nucleophilic oxygen site, yet counterintuitively, it allows the ligand to delocalize the received electronic charge and stabilize the complex.

2.
Molecules ; 29(16)2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39203003

RESUMO

Sandwich d/f heterometallic complexes [(Ln(hfac)3)2M(acac)3] (Ln = La, Pr, Sm, Dy and M = Co; Ln = La and M = Ru) were prepared in strictly anhydrous conditions reacting the formally unsaturated fragment [Ln(hfac)3] and [M(acac)3] in a 2-to-1 molar ratio. These heterometallic complexes are highly sensitive to moisture. Spectroscopic observation revealed that on hydrolysis, these compounds yield dinuclear heterometallic compounds [Ln(hfac)3M(acac)3], prepared here for comparison purposes only. Quantum mechanical calculations supported, on the one hand, the hypothesis on the geometrical arrangement obtained from ATR-IR and NMR spectra and, on the other hand, helped to rationalize the spontaneous hydrolysis reaction.

3.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257364

RESUMO

A reaction in anhydrous toluene between the formally unsaturated fragment [Ln(hfac)3] (Ln3+ = Eu3+, Gd3+ and Er3+; Hhfac = hexafluoroacetylacetone) and [Al(qNO)3] (HqNO = 8-hydroxyquinoline N-oxide), here prepared for the first time from [Al(OtBu)3] and HqNO, affords the dinuclear heterometallic compounds [Ln(hfac)3Al(qNO)3] (Ln3+ = Eu3+, Gd3+ and Er3+) in high yields. The molecular structures of these new compounds revealed a dinuclear species with three phenolic oxygen atoms bridging the two metal atoms. While the europium and gadolinium complexes show the coordination number (CN) 9 for the lanthanide centre, in the complex featuring the smaller erbium ion, only two oxygens bridge the two metal atoms for a resulting CN of 8. The reaction of [Eu(hfac)3] with [Alq3] (Hq = 8-hydroxyquinoline) in the same conditions yields a heterometallic product of composition [Eu(hfac)3Alq3]. A recrystallization attempt from hot heptane in air produced single crystals of two different morphologies and compositions: [Eu2(hfac)6Al2q4(OH)2] and [Eu2(hfac)6(µ-Hq)2]. The latter compound can be directly prepared from [Eu(hfac)3] and Hq at room temperature. Quantum mechanical calculations confirm (i) the higher stability of [Eu(hfac)3Al(qNO)3] vs. the corresponding [Eu(hfac)3Alq3] and (ii) the preference of the Er complexes for the CN 8, justifying the different behaviour in terms of the Lewis acidity of the metal centre.

4.
Phys Chem Chem Phys ; 25(34): 22775-22781, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37358347

RESUMO

We have investigated using DFT methods the reaction mechanism of the Radzisewski reaction to obtain an amide via the reaction of ACN and H2O2 under alkaline conditions. The direct reaction between ACN and H2O2 showed a quite high activation energy (about 45 kcal mol-1) rendering this path unreliable. Instead, a fast reaction between ACN and HOO- forming the deprotonated species (PAIA-) of the peroxyacetimidic acid (PAIA) was observed. From this, PAIA- was guessed to form PAIA through a fast reaction of hydrolysis. Moreover, a second way of formation of PAIA, through an OH- catalyzed path, made the rate determining step (RDS) in very good agreement with experimental data, hence neglecting the contribution of the kinetically favored hydrolysis of PAIA-. This discrepancy was reconciled by considering that the final amide was obtained through a regioselective path forming the PAIA and the further reaction involving the decomposition of PAIA and PAIA-. Indeed, the PAIA obtained from the hydrolysis reaction showed a configuration which did not match the configurational behavior required. Conversely, the PAIA formed from the RDS path matched the required configuration needed to obtain the amide. Our findings also disentangled the experimenal debate on the assignment of the RDS.

5.
Phys Chem Chem Phys ; 25(34): 23314-23315, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37594396

RESUMO

Correction for 'The reaction of acetonitrile with hydrogen peroxide in alkaline medium: a DFT mechanistic study of green production of amides' by Girolamo Casella et al., Phys. Chem. Chem. Phys., 2023, https://doi.org/10.1039/d3cp02024j.

6.
Phys Chem Chem Phys ; 25(39): 26779-26786, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37781890

RESUMO

A precise understanding, at the molecular level, of the massive substrate → adsorbate charge transfer at the NiTPP/Cu(100) interface has been gained through the application of elementary symmetry arguments to the structural determination of the NiTPP adsorption site by photoelectron diffraction (PED) measurements and Amsterdam density functional calculations of the free D4h NiTPP electronic structure. In particular, the PED analysis precisely determines that, among the diverse NiTPP chemisorption sites herein considered (fourfold hollow, atop, and bridge), the fourfold hollow one is the most favorable, with the Ni atom located at 1.93 Å from the surface and at an internuclear distance of 2.66 Å from the nearest-neighbors of the substrate. The use of elementary symmetry considerations enabled us to provide a convincing modeling of the NiTPP-Cu(100) anchoring configuration and an atomistic view of the previously revealed interfacial charge transfer through the unambiguous identification of the adsorbate π* and σ* low-lying virtual orbitals, of the substrate surface atoms, and of the linear combinations of the Cu 4s atomic orbitals involved in the substrate → adsorbate charge transfer. In addition, the same considerations revealed that the experimentally reported Ni(II) → Ni(I) reduction at the interface corresponds to the fingerprint of the chemisorption site of the NiTPP on Cu(100).

7.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142519

RESUMO

To drive the synthesis of metallo-supramolecular assemblies (MSAs) and to fully exploit their functional properties, robust computational tools are crucial. The capability to model and to rationalize different parameters that can influence the outcome is mandatory. Here, we report a computational insight on the factors that can determine the relative stability of the supramolecular isomers helicate and mesocate in lanthanide-based quadruple-stranded assemblies. The considered MSAs have the general formula [Ln2L4]2- and possess a cavity suitable to allocate guests. The analysis was focused on three different factors: the ligand rigidity and the steric hindrance, the presence of a guest inside the cavity, and the guest dimension. Three different quantum mechanical calculation set-ups (in vacuum, with the solvent, and with the solvent and the dispersion correction) were considered. Comparison between theoretical and experimental outcomes suggests that all calculations correctly estimated the most stable isomer, while the inclusion of the dispersion correction is mandatory to reproduce the geometrical parameters. General guidelines can be drawn: less rigid and less bulky is the ligand and less stable is the helicate, and the presence of a guest can strongly affect the isomerism leading to an inversion of the stability by increasing the guest size when the ligand is flexible.


Assuntos
Elementos da Série dos Lantanídeos , Isomerismo , Ligantes , Teoria Quântica , Solventes
8.
Molecules ; 27(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36500209

RESUMO

Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.


Assuntos
Materiais Biocompatíveis , Polímeros , Polímeros/uso terapêutico , Polímeros/química , Materiais Biocompatíveis/química , Engenharia Tecidual , Compostos Organofosforados/uso terapêutico , Compostos Organofosforados/química
9.
Chemistry ; 27(10): 3526-3535, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33264485

RESUMO

Due to its unique magnetic properties offered by the open-shell electronic structure of the central metal ion, and for being an effective catalyst in a wide variety of reactions, iron phthalocyanine has drawn significant interest from the scientific community. Nevertheless, upon surface deposition, the magnetic properties of the molecular layer can be significantly affected by the coupling occurring at the interface, and the more reactive the surface, the stronger is the impact on the spin state. Here, we show that on Cu(100), indeed, the strong hybridization between the Fe d-states of FePc and the sp-band of the copper substrate modifies the charge distribution in the molecule, significantly influencing the magnetic properties of the iron ion. The FeII ion is stabilized in the low singlet spin state (S=0), leading to the complete quenching of the molecule magnetic moment. By exploiting the FePc/Cu(100) interface, we demonstrate that NO2 dissociation can be used to gradually change the magnetic properties of the iron ion, by trimming the gas dosage. For lower doses, the FePc film is decoupled from the copper substrate, restoring the gas phase triplet spin state (S=1). A higher dose induces the transition from ferrous to ferric phthalocyanine, in its intermediate spin state, with enhanced magnetic moment due to the interaction with the atomic ligands. Remarkably, in this way, three different spin configurations have been observed within the same metalorganic/metal interface by exposing it to different doses of NO2 at room temperature.

10.
Inorg Chem ; 60(1): 315-324, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33320664

RESUMO

A theoretical protocol combining density functional theory (DFT) and multireference (CAS) calculations is proposed for a Eu3+ complex. In the complex, electronic levels of the central Eu3+ ion are correctly calculated at the CASPT2 level of theory, and the effect of introducing different numbers of states in the configuration interaction matrices is highlighted as well as the shortcomings of DFT methods in the treatment of systems with high spin multiplicity and strong spin-orbit coupling effects. For the 5D0 state energy calculation, the inclusion of states with different multiplicity and the number of states considered for each multiplicity are crucial parameters, even if their relative weight is different. Indeed, the addition of triplet and singlets is important, while the number of states is relevant only for the quintets. The herein proposed protocol enables a rigorous, full ab initio treatment of Eu3+ complex, which can be easily extended to other Ln3+ ions.

11.
Inorg Chem ; 60(20): 15141-15150, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34612628

RESUMO

A series of Gd3+ complexes (Gd1-Gd3) with the general formula GdL3(EtOH)2, where L is a ß-diketone ligand with polycyclic aromatic hydrocarbon substituents of increasing size (1-3), was studied by combining time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy and DFT calculations to rationalize the anomalous spectroscopic behavior of the bulkiest complex (Gd3) through the series. Its faint phosphorescence band is observed only at 80 K and it is strongly red-shifted (∼200 nm) from the intense fluorescence band. Moreover, the TR-EPR spectral analysis found that triplet levels of 3/Gd3 are effectively populated and have smaller |D| values than those of the other compounds. The combined use of zero-field splitting and spin density delocalization calculations, together with spin population analysis, allows us to explain both the large red shift and the low intensity of the phosphorescence band observed for Gd3. The large red shift is determined by the higher delocalization degree of the wavefunction, which implies a larger energy gap between the excited S1 and T1 states. The low intensity of the phosphorescence is due to the presence of C-H groups which favor non-radiative decay. These groups are present in all complexes; nevertheless, they have a relevant spin density only in Gd3. The spin population analysis on NaL models, in which Na+ is coordinated to a deprotonated ligand, mimicking the coordinative environment of the complex, confirms the outcomes on the free ligands.

12.
Phys Chem Chem Phys ; 23(43): 24661-24668, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704581

RESUMO

The relative stability of trans-[(η5-C5H5)Fe(η1-CO)(µ-CO)]2 (trans-I) and cis-I tautomers in a vacuum and in solvents with different dielectric constants (ε) has been investigated by exploiting density functional theory (DFT). Theoretical results indicate that, in agreement with experimental evidence, trans-I is more stable than cis-I in a vacuum (∼1.5 kcal mol-1; ε = 1), while the opposite is true in media with ε > 7. Differently from solution, DFT outcomes pertaining to the vapor-phase cis-I ⇆ trans-I equilibrium at T = 368 K, the temperature at which the Fe L2,3-edges and the C and O K-edge X-ray absorption spectroscopy (XAS) data of I have been recorded, ultimately indicate the trans-I predominance (∼93%). Compositions, oscillator strengths (f) and excitation energy (EE) values of cis-I transitions substantially mirror those of trans-I; nevertheless, the weighted cis-If(EE) distributions negligibly contribute to the diverse simulated XA spectra of I.

13.
Phys Chem Chem Phys ; 22(21): 12180-12186, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32426780

RESUMO

In this paper we report on the use of an Ullmann-like aryl halide homocoupling reaction to obtain long Graphyne Molecular Wires (GY MWs) organized in dense, ordered arrays. Instead of using highly reactive terminal alkynes, we resort to a precursor wherein the acetylenic functional group is internal, namely protected by two phenyl rings, each bearing a Br atom in the para position to allow for linear homocoupling. In addition, two further factors concur with the production of dense and highly ordered arrays of very long GY MWs, namely the geometric compatibility between the substrate and both the organometallic intermediates and the final polymeric products of the synthesis, coupled with the presence of surface-adsorbed bromine atoms separating the MWs, which minimize inter-wire cross-linking secondary reactions.

14.
Inorg Chem ; 58(9): 5844-5857, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30998004

RESUMO

The occupied and unoccupied electronic structures of three highly popular, closed shell organoiron complexes ([Fe(CO)5], [(η5-C5H5)Fe(CO)(µ-CO)]2, and [(η5-C5H5)2Fe]) have been theoretically investigated by taking advantage of density functional theory (DFT) calculations coupled to the isolobal analogy ( Elian et al. Inorg. Chem. 1976 , 15 , 1148 ). The adopted approach allowed us to look into the relative role played by the ligand → Fe donation and the Fe → ligand back-donation in title molecules, as well as to investigate how CO- (terminal or bridging) and [(η5-C5H5)]--based π* orbitals compete when these two ligands are simultaneously present as in [(η5-C5H5)Fe(CO)(µ-CO)]2. Insights into the nature and the strength of the bonding between Fe and the C donor atoms have been gained by exploiting the Nalewajski-Mrozek bond multiplicity index ( Nalewajski et al. Int. J. Quantum Chem. 1994 , 51 , 187 ), which have been found especially sensitive even to tiny bond distance variations. The bonding picture emerging from ground state DFT results proved fruitful to guide the assignment of original, high-resolution, gas-phase L2,3-edges X-ray absorption spectra of the title molecules, which have been modeled by the two-component relativistic time-dependent DFT including spin orbit coupling and correlation effects and taking advantage of the full use of symmetry. Assignments alternative to those reported in the literature for both [Fe(CO)5] and [(η5-C5H5)2Fe] are herein proposed. Despite the high popularity of the investigated molecules, the complementary use of symmetry, orbital, and spectroscopy allowed us to further look into the metal-ligand symmetry-restricted-covalency and the differential-orbital covalency, which characterize them.

15.
Inorg Chem ; 58(24): 16411-16423, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31756086

RESUMO

The unoccupied electronic structures of three closed-shell, highly popular organoiron complexes ([Fe(CO)5], [(η5-C5H5)Fe(CO)(µ-CO)]2, and [(η5-C5H5)2Fe]; 0, I, and II, respectively) have been investigated both experimentally and theoretically by combining original gas-phase X-ray absorption spectroscopy (XAS) outcomes recorded at the C and O K-edge with results of scalar relativistic time-dependent density functional calculations carried out within the zeroth order regular approximation. Experimental evidence herein discussed complement the Fe L2,3-edges XAS ones we recently recorded, modeled, and assigned for the same complexes (Carlotto et al. Inorg. Chem. 2019, 58, 5844). The first-principle simulation of the C and O K-edge features allowed us to univocally identify the electronic states associated to the ligand-to-metal charge transfer (LMCT) transitions both in I and in II. At variance to that, LMCT transitions with sizable oscillator strengths do not play any role in determining neither the C nor the O K-edge spectral pattern of 0. The higher π-acceptor capability of the CO ligand, regardless of its terminal or bridging coordination, with respect to [(η5-C5H5)]- is herein ultimately confirmed.

16.
Inorg Chem ; 57(4): 1859-1869, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29389113

RESUMO

The electronic properties of three vanadium phthalocyaninato (Pc) based complexes (PcV, PcVO, and PcVI; I-III, respectively) were theoretically investigated and corresponding VL2,3-edge XAS spectra modeled. Ground state (GS) DFT outcomes indicated that II is more stable than III by 141 kcal/mol; moreover, the Ziegler transition state method allowed us to estimate the PcV-X bond dissociation energy and to quantify σ/π contributions to the V-X interaction. As such, the Nalewajski-Mrozek V-X and V-N bond multiplicity indexes (V-O/V-I = 2.48/1.22; V-N = 0.64, 0.51, and 0.58 in I-III, respectively) state that the V-X bond strength and nature affect the V-N interaction. The coordination of X to V in the I → II/I → III reactions implies the transfer of two/one electrons from I to X. In both cases, the oxidation involves only the V ion; moreover, V 3d based orbitals from which electrons are transferred were identified. Literature I/IIL2,3-edge XAS data were modeled by exploiting the DFT/ROCIS method. The same protocol was adopted to predict IIIL2,3-edge XAS spectra. Theoretical results indicated that, along the whole series, spectral features lying at the lowest excitation energies (EEs) are mostly generated by states having the same GS spin multiplicity and involve 2pV → SOMO (single occupied molecular orbital) single electronic excitations. XAS features at higher EEs include only states with the same GS spin multiplicity in I, while states with both ΔS = 0 and ΔS = +1 (S = total spin quantum number) are present in II and III with significant, in some cases prevailing, contributions from metal to ligand charge transfer (MLCT) excitations. Beyond the role played by MLCT transitions in determining XAS patterns, it is noteworthy that they involve only Pc-based empty orbitals with no participation of the X-based virtual levels.

17.
Phys Chem Chem Phys ; 18(3): 2242-9, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26695412

RESUMO

Mn(acac)2 (I) and Co(acac)2 (II) L2,3-edge absorption spectra have been modeled using the DFT/ROCIS method. In addition to the agreement between experiment and theory, the combined use of the B3LYP exchange-correlation functional and the def2-TZVP(-f) basis set provided useful information about the coordinative geometry around the M(ii) ions as well as about the nature and the strength of the Mn-O and Co-O interaction. The lower excitation energy (EE) side of both (I)(/)(II)L3 and (I)(/)(II)L2 intensity distributions mainly includes states having ground state spin multiplicity (S = 5/2 in I and S = 3/2 in II), whereas states with lower spin multiplicity (S = 3/2 in I and S = 1/2 in II) significantly contribute to the higher EE side of both (I)(/)(II)L3 and (I)(/)(II)L2. Hence, the occurrence of states involving metal to ligand charge transfer transitions in the presence of ligands with low lying empty π* orbitals on the L3 and L2 higher EE sides is herein confirmed.

18.
Phys Chem Chem Phys ; 18(48): 33282-33286, 2016 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-27896341

RESUMO

The energetics of the catalytic oxidation of CO on a complex metal oxide are investigated for the first time via density functional theory calculations. The catalyst, Co-doped SrTiO3, is modelled using periodically repeated slabs based on the SrTiO3(100) surface. The comparison of the energy profiles obtained for the pure host and the Co-doped material reveals the actual pathway followed by the reaction, and shows that Co doping enhances the catalytic properties of SrTiO3 by reducing the energy cost for the formation of oxygen vacancies.

19.
Phys Chem Chem Phys ; 18(28): 18727-38, 2016 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-27166746

RESUMO

Copper complexes of tetraphenylporphyrin (H2TPP) and tetrakis(pentafluorophenyl)porphyrin (H2TPP(F)) deposited as thin films on Au(111) have been studied experimentally and theoretically. Core level emissions from C 1s, N 1s, F 1s and Cu 2p as well as valence states of CuTPP and CuTPP(F) have been investigated using surface photoelectron spectroscopy. The interpretation of experimental results has been guided by theoretical calculations carried out on isolated species in the habit of the density functional theory. Reference to experimental and theoretical outcomes pertaining to H2TPP and H2TPP(F) allowed a confident and detailed assignment of the title molecules' X-ray and ultraviolet photoemission data. With specific reference to the latter, similar to copper phthalocyanine (CuPc), whose coordinative pocket mirrors the CuTPP/CuTPP(F) ones, the lowest ionization energy of the title compounds implies electron ejection from a ring orbital rather than from the Cu 3d-based singly occupied molecular orbital. Moreover, analogous to CuPc, the ionic contribution appears to play an important role in the Cu-N bonding. Nevertheless, differences in the number, symmetry, nature and relative position of CuTPP/CuTPP(F) occupied frontier orbitals compared to CuPc may be stated only by considering in great detail the Cu-ligand covalent interactions.

20.
Phys Chem Chem Phys ; 18(36): 24890-904, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27412494

RESUMO

The unoccupied electronic structure of thick films of tetraphenylporphyrin and tetrakis(pentafluorophenyl)porphyrin Cu(ii) complexes (hereafter, CuTPP and CuTPP(F)) deposited on Au(111) has been studied by combining the outcomes of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy with those of spin-unrestricted time-dependent density functional (TD-DFT) calculations carried out either within the scalar relativistic zeroth order regular approximation (ZORA) framework (C, N and F K-edges) or by using the Tamm-Dancoff approximation coupled to ZORA and including spin-orbit effects (Cu L2,3-edges). Similarly to the modelling of NEXAFS outcomes pertaining to other Cu(ii) complexes, the agreement between theory and experiment is more than satisfactory, thus confirming the open-shell TD-DFT to be a useful tool to look into NEXAFS results pertinent to Cu(ii) compounds. The combined effect of metalation and phenyl (Ph) fluorine decoration is found to favour an extensive mixing between (Ph)σ* and pristine porphyrin macrocyle (pmc) (pmc)π* virtual levels. The lowest lying excitation in the C and N K-edge spectra of both CuTPP and CuTPP(F) is associated with a ligand-to-metal-charge-transfer transition, unambiguously revealed in the (CuTPP)N K-edge spectral pattern. Moreover, the comparison with literature data pertaining to the modelling of the (Cu(II))L2,3 features in the phthalocyanine-Cu(ii) (CuPc) complex provided further insights into how metal-to-ligand-charge-transfer transitions associated with excitations from 2p(Cu(II)) AOs to low-lying, ligand-based π* MOs may contribute to the Cu(ii) L2,3-edge intensity and thus weaken its believed relationship with the Cu(ii)-ligand symmetry-restricted covalency. Despite the coordinative pocket of CuTPP/CuTPP(F) mirroring CuPc, the ligand-field strength exerted by the phthalocyanine ligand on the Cu(ii) centre is experimentally found and theoretically confirmed to be slightly stronger than that experienced by Cu in CuTPP and CuTPP(F). On the whole, the obtained results complement those published in the near past by the same group on the occupied and empty states of the H2TPP and H2TPP(F) free ligands as well as on the occupied states of both CuTPP and CuTPP(F), thus providing the final piece to get a thorough description of electronic perturbations associated with the metalation and the Ph halogen decoration of H2TPP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA