Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Support Care Cancer ; 27(4): 1425-1433, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30187220

RESUMO

BACKGROUND: Vaginal dilators (VD) are recommended following vaginal or pelvic radiotherapy for patients with endometrial carcinoma (EC) to prevent vaginal stenosis (VS). The time course of VS is not fully understood and the optimal duration of VD use is unknown. METHODS: We reviewed 243 stage IA-II EC patients who received adjuvant brachytherapy (BT) at an academic tertiary referral center. Patients were instructed to use their VD three times per week for at least 1-year duration. The primary outcome was development of grade ≥ 1 VS using CTCAEv4 criteria during the follow-up period. The log-rank test and multivariable Cox proportional hazards modeling were used to evaluate the effect of VD use (noncompliance vs. standard compliance [up to 1 year] vs. extended compliance [over 1 year]) on VS. RESULTS: The median follow-up was 15.2 months over the 5-year study period. At 15 months, the incidence of VS was 38.8% for noncompliant patients, 33.5% for those with standard compliance, and 21.4% for those with extended compliance (median time to grade ≥ 1 VS was 17.5 months, 26.7 months, and not yet reached for these groups, respectively). On multivariable Cox regression analysis, extended compliance remained a significant predictor of reduced VS risk when compared to both noncompliance (HR 0.38, 95% CI 0.18-0.80, p = 0.012) and standard compliance (HR 0.43, 95% CI 0.20-0.89, p = 0.023). CONCLUSIONS: The risk of VS persists beyond 1 year after BT. Extended VD compliance beyond 1 year may mitigate this risk.


Assuntos
Braquiterapia , Constrição Patológica/prevenção & controle , Dilatação/instrumentação , Neoplasias do Endométrio/radioterapia , Doenças Vaginais/prevenção & controle , Adulto , Idoso , Braquiterapia/efeitos adversos , Constrição Patológica/etiologia , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Cooperação do Paciente , Dosagem Radioterapêutica , Resultado do Tratamento , Vagina/patologia , Vagina/efeitos da radiação
2.
Int J Radiat Oncol Biol Phys ; 119(1): 292-301, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072322

RESUMO

PURPOSE: Electron paramagnetic resonance (EPR) biodosimetry, used to triage large numbers of individuals incidentally exposed to unknown doses of ionizing radiation, is based on detecting a stable physical response in the body that is subject to quantifiable variation after exposure. In vivo measurement is essential to fully characterize the radiation response relevant to a living tooth measured in situ. The purpose of this study was to verify EPR spectroscopy in vivo by estimating the radiation dose received in participants' teeth. METHODS AND MATERIALS: A continuous wave L-band spectrometer was used for EPR measurements. Participants included healthy volunteers and patients undergoing head and neck and total body irradiation treatments. Healthy volunteers completed 1 measurement each, and patients underwent measurement before starting treatment and between subsequent fractions. Optically stimulated luminescent dosimeters and diodes were used to determine the dose delivered to the teeth to validate EPR measurements. RESULTS: Seventy measurements were acquired from 4 total body irradiation and 6 head and neck patients over 15 months. Patient data showed a linear increase of EPR signal with delivered dose across the dose range tested. A linear least-squares weighted fit of the data gave a statistically significant correlation between EPR signal and absorbed dose (P < .0001). The standard error of inverse prediction (SEIP), used to assess the usefulness of fits, was 1.92 Gy for the dose range most relevant for immediate triage (≤7 Gy). Correcting for natural background radiation based on patient age reduced the SEIP to 1.51 Gy. CONCLUSIONS: This study demonstrated the feasibility of using spectroscopic measurements from radiation therapy patients to validate in vivo EPR biodosimetry. The data illustrated a statistically significant correlation between the magnitude of EPR signals and absorbed dose. The SEIP of 1.51 Gy, obtained under clinical conditions, indicates the potential value of this technique in response to large radiation events.


Assuntos
Dente , Humanos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Dente/química , Dente/efeitos da radiação , Irradiação Corporal Total , Radiometria/métodos , Doses de Radiação
3.
Med Phys ; 49(3): 2039-2054, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34644403

RESUMO

We review the current status of proton FLASH experimental systems, including preclinical physical and biological results. Technological limitations on preclinical investigation of FLASH biological mechanisms and determination of clinically relevant parameters are discussed. A review of the biological data reveals no reproduced proton FLASH effect in vitro and a significant in vivo FLASH sparing effect of normal tissue toxicity observed with multiple proton FLASH irradiation systems. Importantly, multiple studies suggest little or no difference in tumor growth delay for proton FLASH when compared to conventional dose rate proton radiation. A discussion follows on future areas of development with a focus on the determination of the optimal parameters for maximizing the therapeutic ratio between tumor and normal tissue response and ultimately clinical translation of proton FLASH radiation.


Assuntos
Neoplasias , Terapia com Prótons , Humanos , Terapia com Prótons/métodos , Prótons , Radiação Ionizante , Dosagem Radioterapêutica
4.
Int J Radiat Oncol Biol Phys ; 112(1): 237-246, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34425196

RESUMO

PURPOSE: This study aimed to investigate the correlation between imaging changes in brain normal tissue and the spatial distribution of linear energy transfer (LET) for a cohort of patients with meningioma treated with scanned proton beams. Then, assuming imaging changes are induced by cell lethality, we studied the correlation between normal tissue complication probability and LET. METHODS AND MATERIALS: Magnetic resonance imaging T2/fluid attenuated inversion recovery acquired at different intervals after proton radiation were coregistered with the planning computed tomography (CT) images from 26 patients with meningioma with abnormalities after proton radiation therapy. For this purpose, the T2/fluid attenuated inversion recovery areas not on the original magnetic resonance images were contoured, and the LET values for each voxel in the patient geometry were calculated to investigate the correlation between the position of imaging changes and the LET at those positions. To separate the effect of the dose as the inductor of these changes, we compared the LET in these areas with a sample of voxels matching the dose distributions across the image change areas. Patients with a higher LET in image change areas were grouped to verify whether they shared common characteristics. RESULTS: Eleven of the patients showed higher dose-averaged LET (LETd) in imaging change regions than in the group of voxels with the same dose. This group of patients had significantly shallower targets for their treatment than the other 15 and used fewer beams and angles. CONCLUSIONS: This study points toward the possibility that areas with imaging change are more likely to occur in regions with high dose or in areas with lower dose but increased LETd. The effect of LETd on imaging changes seems to be more relevant when treating superficial lesions with few nonopposed beams. However, most patients did not show a spatial correlation between their image changes and the LETd values, limiting the cases for the possible role of high LET as a toxicity inductor.


Assuntos
Neoplasias Meníngeas , Meningioma , Terapia com Prótons , Encéfalo , Humanos , Transferência Linear de Energia , Imageamento por Ressonância Magnética , Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/radioterapia , Meningioma/diagnóstico por imagem , Meningioma/radioterapia , Método de Monte Carlo , Probabilidade , Terapia com Prótons/efeitos adversos , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos
5.
Pract Radiat Oncol ; 12(4): e282-e285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35304348

RESUMO

PURPOSE: Although dose de-escalation is one proposed strategy to mitigate long-term toxicity in human papillomavirus associated oropharyngeal cancer, applying more stringent normal tissue constraints may be a complementary approach to further reduce toxicity. Our study demonstrates that in a postoperative setting, improving upon nationally accepted constraints is achievable and leads to reductions in normal tissue complication probabilities (NTCP) without compromising disease control. METHODS AND MATERIALS: We identified 92 patients at our institution between 2015 and 2019 with p16+ oropharyngeal cancer who were treated with adjuvant volumetric modulated arc therapy. We included patients treated to postoperative doses and standard volumes (including bilateral neck). Doses delivered to organs at risk were compared with recommended dose constraints from a recent cooperative group head and neck cancer trial of radiation therapy to 60 Gy. We applied validated and published NTCP models for dysphagia, dysgeusia, esophagitis, oral mucositis, and xerostomia relevant to oropharyngeal cancer. RESULTS: Achievable and delivered mean doses to most normal head and neck tissues were well below national recommended constraints. This translates to notable absolute NTCP reductions for salivary flow (10% improvement in contralateral parotid, 35% improvement in submandibular gland), grade ≥ 2 esophagitis (23% improvement), grade ≥ 3 mucositis (17% improvement), dysgeusia (10% improvement), and dysphagia (8% improvement). Locoregional control at a median follow-up of 26.3 months was 96.7%, with only 3 patients experiencing locoregional recurrence (1 local, 2 regional). CONCLUSIONS: Modern radiation therapy planning techniques allow for improved normal tissue sparing compared with currently established dose constraints without compromising disease control. These improvements may lead to reduced toxicity in a patient population expected to have favorable long-term outcomes. Stricter constraints can be easily achieved and should be used in conjunction with other evolving efforts to mitigate toxicity.


Assuntos
Transtornos de Deglutição , Esofagite , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Radioterapia de Intensidade Modulada , Transtornos de Deglutição/etiologia , Disgeusia/complicações , Esofagite/etiologia , Neoplasias de Cabeça e Pescoço/complicações , Humanos , Neoplasias Orofaríngeas/radioterapia , Glândula Parótida , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/efeitos adversos , Radioterapia de Intensidade Modulada/métodos
6.
Front Oncol ; 12: 1004121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518319

RESUMO

Introduction: Radiation-induced oxygen depletion in tissue is assumed as a contributor to the FLASH sparing effects. In this study, we simulated the heterogeneous oxygen depletion in the tissue surrounding the vessels and calculated the proton FLASH effective-dose-modifying factor (FEDMF), which could be used for biology-based treatment planning. Methods: The dose and dose-weighted linear energy transfer (LET) of a small animal proton irradiator was simulated with Monte Carlo simulation. We deployed a parabolic partial differential equation to account for the generalized radiation oxygen depletion, tissue oxygen diffusion, and metabolic processes to investigate oxygen distribution in 1D, 2D, and 3D solution space. Dose and dose rates, particle LET, vasculature spacing, and blood oxygen supplies were considered. Using a similar framework for the hypoxic reduction factor (HRF) developed previously, the FEDMF was derived as the ratio of the cumulative normoxic-equivalent dose (CNED) between CONV and UHDR deliveries. Results: Dynamic equilibrium between oxygen diffusion and tissue metabolism can result in tissue hypoxia. The hypoxic region displayed enhanced radio-resistance and resulted in lower CNED under UHDR deliveries. In 1D solution, comparing 15 Gy proton dose delivered at CONV 0.5 and UHDR 125 Gy/s, 61.5% of the tissue exhibited ≥20% FEDMF at 175 µm vasculature spacing and 18.9 µM boundary condition. This percentage reduced to 34.5% and 0% for 8 and 2 Gy deliveries, respectively. Similar trends were observed in the 3D solution space. The FLASH versus CONV differential effect remained at larger vasculature spacings. A higher FLASH dose rate showed an increased region with ≥20% FEDMF. A higher LET near the proton Bragg peak region did not appear to alter the FLASH effect. Conclusion: We developed 1D, 2D, and 3D oxygen depletion simulation process to obtain the dynamic HRF and derive the proton FEDMF related to the dose delivery parameters and the local tissue vasculature information. The phenomenological model can be used to simulate or predict FLASH effects based on tissue vasculature and oxygen concentration data obtained from other experiments.

7.
Pharmaceutics ; 13(12)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34959471

RESUMO

Auger cascades generated in high atomic number nanoparticles (NPs) following ionization were considered a potential mechanism for NP radiosensitization. In this work, we investigated the microdosimetric consequences of the Auger cascades using the theory of dual radiation action (TDRA), and we propose the novel Bomb model as a general framework for describing NP-related radiosensitization. When triggered by an ionization event, the Bomb model considers the NPs that are close to a radiation sensitive cellular target, generates dense secondary electrons and kills the cells according to a probability distribution, acting like a "bomb." TDRA plus a distance model were used as the theoretical basis for calculating the change in α of the linear-quadratic survival model and the relative biological effectiveness (RBE). We calculated these quantities for SQ20B and Hela human cancer cells under 250 kVp X-ray irradiation with the presence of gadolinium-based NPs (AGuIXTM), and 220 kVp X-ray irradiation with the presence of 50 nm gold NPs (AuNPs), respectively, and compared with existing experimental data. Geant4-based Monte Carlo (MC) simulations were used to (1) generate the electron spectrum and the phase space data of photons entering the NPs and (2) calculate the proximity functions and other related parameters for the TDRA and the Bomb model. The Auger cascade electrons had a greater proximity function than photoelectric and Compton electrons in water by up to 30%, but the resulting increases in α were smaller than those derived from experimental data. The calculated RBEs cannot explain the experimental findings. The relative increase in α predicted by TDRA was lower than the experimental result by a factor of at least 45 for SQ20B cells with AGuIX under 250 kVp X-ray irradiation, and at least four for Hela cells with AuNPs under 220 kVp X-ray irradiation. The application of the Bomb model to Hela cells with AuNPs under 220 kVp X-ray irradiation indicated that a single ionization event for NPs caused by higher energy photons has a higher probability of killing a cell. NPs that are closer to the cell nucleus are more effective for radiosensitization. Microdosimetric calculations of the RBE for cell death of the Auger electron cascade cannot explain the experimentally observed radiosensitization by AGuIX or AuNP, while the proposed Bomb model is a potential candidate for describing NP-related radiosensitization at low NP concentrations.

8.
Med Phys ; 48(2): 805-818, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33210739

RESUMO

PURPOSE: Treatment plans in proton therapy are more sensitive to uncertainties than in conventional photon therapy. In addition to setup uncertainties, proton therapy is affected by uncertainties in proton range and relative biological effectiveness (RBE). While to date a constant RBE of 1.1 is commonly assumed, the actual RBE is known to increase toward the distal end of the spread-out Bragg peak. Several models for variable RBE predictions exist. We present a framework to evaluate the combined impact and interactions of setup, range, and RBE uncertainties in a comprehensive, variance-based sensitivity analysis (SA). MATERIAL AND METHODS: The variance-based SA requires a large number (104 -105 ) of RBE-weighted dose (RWD) calculations. Based on a particle therapy extension of the research treatment planning system CERR we implemented a fast, graphics processing unit (GPU) accelerated pencil beam modeling of patient and range shifts. For RBE predictions, two biological models were included: The mechanistic repair-misrepair-fixation (RMF) model and the phenomenological Wedenberg model. All input parameters (patient position, proton range, RBE model parameters) are sampled simultaneously within their assumed probability distributions. Statistical formalisms rank the input parameters according to their influence on the overall uncertainty of RBE-weighted dose-volume histogram (RW-DVH) quantiles and the RWD in every voxel, resulting in relative, normalized sensitivity indices (S = 0: noninfluential input, S = 1: only influential input). Results are visualized as RW-DVHs with error bars and sensitivity maps. RESULTS AND CONCLUSIONS: The approach is demonstrated for two representative brain tumor cases and a prostate case. The full SA including ∼ 3 × 10 4 RWD calculations took 39, 11, and 55 min, respectively. Range uncertainty was an important contribution to overall uncertainty at the distal end of the target, while the relatively smaller uncertainty inside the target was governed by biological uncertainties. Consequently, the uncertainty of the RW-DVH quantile D98 for the target was governed by range uncertainty while the uncertainty of the mean target dose was dominated by the biological parameters. The SA framework is a powerful and flexible tool to evaluate uncertainty in RWD distributions and DVH quantiles, taking into account physical and RBE uncertainties and their interactions. The additional information might help to prioritize research efforts to reduce physical and RBE uncertainties and could also have implications for future approaches to biologically robust planning and optimization.


Assuntos
Terapia com Prótons , Análise de Variância , Humanos , Masculino , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa , Incerteza
9.
Radiother Oncol ; 155: 212-218, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33186682

RESUMO

PURPOSE: Proton Pencil Beam Scanning (PBS) is an attractive solution to realize the advantageous normal tissue sparing elucidated from FLASH high dose rates. The mechanics of PBS spot delivery will impose limitations on the effective field dose rate for PBS. METHODS: This study incorporates measurements from clinical and FLASH research beams on uniform single energy and the spread-out Bragg Peak PBS fields to extrapolate the PBS dose rate to high cyclotron beam currents 350, 500, and 800 nA. The impact of the effective field dose rate from cyclotron current, spot spacing, slew time and field size were studied. RESULTS: When scanning magnet slew time and energy switching time are not considered, single energy effective field FLASH dose rate (≥40 Gy/s) can only be achieved with less than 4 × 4 cm2 fields when the cyclotron output current is above 500 nA. Slew time and energy switching time remain the limiting factors for achieving high effective dose rate of the field. The dose rate-time structures were obtained. The amount of the total dose delivered at the FLASH dose rate in single energy layer and volumetric field was also studied. CONCLUSION: It is demonstrated that while it is difficult to achieve FLASH dose rate for a large field or in a volume, local FLASH delivery to certain percentage of the total dose is possible. With further understanding of the FLASH radiobiological mechanism, this study could provide guidance to adapt current clinical multi-field proton PBS delivery practice for FLASH proton radiotherapy.


Assuntos
Terapia com Prótons , Prótons , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
10.
Med Phys ; 48(7): 3948-3957, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33843065

RESUMO

INTRODUCTION: Ultra-high dose rate (FLASH) radiotherapy has become a popular research topic with the potential to reduce normal tissue toxicities without losing the benefit of tumor control. The development of FLASH proton pencil beam scanning (PBS) delivery requires accurate dosimetry despite high beam currents with correspondingly high ionization densities in the monitoring chamber. In this study, we characterized a newly designed high-resolution position sensing transmission ionization chamber with a purpose-built multichannel electrometer for both conventional and FLASH dose rate proton radiotherapy. METHODS: The dosimetry and positioning accuracies of the ion chamber were fully characterized with a clinical scanning beam. On the FLASH proton beamline, the cyclotron output current reached up to 350 nA with a maximum energy of 226.2 MeV, with 210 ± 3 nA nozzle pencil beam current. The ion recombination effect was characterized under various bias voltages up to 1000 V and different beam intensities. The charge collected by the transmission ion chamber was compared with the measurements from a Faraday cup. RESULTS: Cross-calibrated with an Advanced Markus chamber (PTW, Freiburg, Germany) in a uniform PBS proton beam field at clinical beam setting, the ion chamber calibration was 38.0 and 36.7 GyE·mm2 /nC at 100 and 226.2 MeV, respectively. The ion recombination effect increased with larger cyclotron current at lower bias voltage while remaining ≤0.5 ± 0.5% with ≥200 V of bias voltage. Above 200 V, the normalized ion chamber readings demonstrated good linearity with the mass stopping power in air for both clinical and FLASH beam intensities. The spot positioning accuracy was measured to be 0.10 ± 0.08 mm in two orthogonal directions. CONCLUSION: We characterized a transmission ion chamber system under both conventional and FLASH beam current densities and demonstrated its suitability for use as a proton pencil beam dose and spot position delivery monitor under FLASH dose rate conditions.


Assuntos
Terapia com Prótons , Prótons , Alemanha , Radiometria , Dosagem Radioterapêutica
11.
Med Phys ; 47(7): 3184-3190, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32249429

RESUMO

INTRODUCTION: To revisit the formulation of the mean chord length in microdosimetry and replace it by the particle mean free path appropriate for modelings in radiobiology. METHODS: We perform a collision-by-collision followed by event-by-event Geant4 Monte Carlo simulation and calculate double-averaged stepping length, 〈〈l〉〉, for a range of target sizes from mm down to µm and depth in water. We consider 〈〈l〉〉 to represent the particle mean free path. RESULTS: We show that 〈〈l〉〉 continuously drops as a function of depth and asymptotically saturates to a minimum value in low energies, where it exhibits a universal scaling behavior, independent of particle nominal beam energy. We correlate 〈〈l〉〉 to linear density of DNA damage, complexities of initial lethal lesions and illustrate a relative difference between predictive RBEs in model calculations using mean chord length vs the proposed mean free path. We demonstrate consistency between rapid increase in RBE within and beyond the Bragg peak and 〈〈l〉〉, a decreasing function of depth. DISCUSSION AND CONCLUSION: An interplay between localities in imparted energy at nanometer scale and subsequent physio-chemical processes, causalities and pathways in DNA damage requires substitution of geometrical chord length of cell nuclei by mean-free path of proton and charged particles to account for a mean distance among sequential collisions in DNA materials. To this end, the event averaging over cell volume in the current microdosimetry formalism must be superseded by the collision averaging scored within the volume. The former, is fundamentally a global attribute of the cell nuclei surfaces and boundaries and is characterized by their membrane diameters, hence such global indices are not appropriate to quantitatively represent the radiobiological strength of the particles and their RBE variabilities that is associated with the sensitivities to local structure of the collisions and their spatio-temporal collective patterns in DNA materials.


Assuntos
Transferência Linear de Energia , Terapia com Prótons , Método de Monte Carlo , Prótons , Eficiência Biológica Relativa
12.
Med Phys ; 47(7): 2768-2778, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32162332

RESUMO

PURPOSE: To model four-dimensional (4D) relative biological effectiveness (RBE)-weighted dose variations in abdominal lesions treated with scanned carbon ion beam in case of irregular breathing motion. METHODS: The proposed method, referred to as bioWED method, combines the simulation of tumor motion in a patient- and beam-specific water equivalent depth (WED)-space with RBE modeling, aiming at the estimation of RBE-weighted dose changes due to respiratory motion. The method was validated on a phantom, simulating gated and free breathing dose delivery, and on a patient case, for which free breathing irradiation was assumed and both amplitude and baseline breathing irregularities were simulated through a respiratory motion model. We quantified (a) the effect of motion on the equivalent uniform dose (EUD) and the RBE-weighted dose-volume histograms (DVH), by comparing the planned dose distribution with "ground truth" 4D RBE-weighted doses computed using 4D computed tomography data, and (ii) the estimation error, by comparing the doses estimated with the bioWED method to "ground truth" 4D RBE-weighted doses. RESULTS: In the phantom validation, the estimation error on the EUD was limited with respect to the motion effect and the median estimation error on relevant RBE-weighted DVH metrics remained within 5%. In the patient study, the estimation error as computed on the EUD was smaller than the corresponding motion effect, exhibiting the largest values in the baseline irregularity simulation. However, the median estimation error over all simulations was below 3.2% considering relevant DVH metrics. CONCLUSIONS: In the evaluated cases, the bioWED method showed proper accuracy when compared to deformable image registration-based 4D dose calculation. Therefore, it can be seen as a tool to test treatment plan robustness against irregular breathing motion, although its accuracy decreases as a function of increasing soft tissue deformation and should be evaluated on a larger patient dataset.


Assuntos
Carbono , Neoplasias Pulmonares , Tomografia Computadorizada Quadridimensional , Humanos , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Eficiência Biológica Relativa
14.
Brachytherapy ; 18(5): 701-710, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31109870

RESUMO

PURPOSE: This work quantifies the influence of intrafraction DNA damage repair and cellular repopulation on biologically effective dose (BED) in Ir-192 high-dose-rate brachytherapy for prostate cancer. In addition, it examines the effect of source-decay-induced BED variation for patients treated at different time points in a source exchange cycle. MATERIALS AND METHODS: Current fractionation schemes are based on simplified-form BED = nd(1 + d/(α/ß)), which assumes that intrafraction repair, interfraction repair, and repopulation are negligible. We took accepted radiobiological parameters of Tk, Tp, and α from the recommendations of the AAPM TG-137, and recalculated the full-form BED. Fraction times were normalized to require 15 min for 20 Gy at 10 Ci. Calculations were carried out for both α/ß = 1.5 and 3 Gy. RESULTS: After accounting for intrafraction repair, interfraction repair, and/or repopulation, full-form BED calculations showed significant values, as compared with simplified-form BED. For 1-fraction 20 Gy fractionation, the full-form BED was only 64-82% of the simplified-form BED. Dose protraction effects were milder for smaller prescriptions (6 Gy/Fx), where full form was 87-94%. With regard to source decay, BED varied >20% for patients treated at the beginning and the end of a source exchange cycle for 20 Gy single-fraction prescription. CONCLUSIONS: Repair and repopulation can be significant in monotherapy high-dose-rate for prostate cancer. As fractionation schemes are established, the simplified BED calculation may not be appropriate. Investigators should consider evaluating BED as a range rather than a discrete value when presenting results unless source activity is explicitly incorporated as well.


Assuntos
Braquiterapia/métodos , Neoplasias da Próstata/radioterapia , Sobrevivência Celular/efeitos da radiação , Reparo do DNA , DNA de Neoplasias/efeitos da radiação , Fracionamento da Dose de Radiação , Humanos , Radioisótopos de Irídio/uso terapêutico , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Radiometria/métodos , Dosagem Radioterapêutica , Eficiência Biológica Relativa
15.
Phys Med Biol ; 64(12): 125008, 2019 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-30870831

RESUMO

Ion computed tomography (iCT) represents a potential replacement for x-ray CT (xCT) in ion therapy treatment planning to reduce range uncertainties, inherent in the semi-empirical conversion of xCT information into relative stopping power (RSP). In this work, we aim to quantify the increase in dosimetric accuracy associated with using proton-, helium- and carbon-CT compared to conventional xCT for clinical scenarios in proton therapy. Three cases imaged with active beam-delivery using an ideal single-particle-tracking detector were investigated using FLUKA Monte-Carlo (MC) simulations. The RSP accuracy of the iCTs was evaluated against the ground truth at similar physical dose. Next, the resulting dosimetric accuracy was investigated by using the RSP images as a patient model in proton therapy treatment planning, in comparison to common uncertainties associated with xCT. Finally, changes in relative biological effectiveness (RBE) with iCT particle type/spectrum were investigated by incorporating the repair-misrepair-fixation (RMF) model into FLUKA, to enable first insights on the associated biological imaging dose. Helium-CT provided the lowest overall RSP error, whereas carbon-CT offered the highest accuracy for bone and proton-CT for soft tissue. For a single field, the average relative proton beam-range variation was -1.00%, +0.09%, -0.08% and -0.35% for xCT, proton-, helium- and carbon-CT, respectively. Using a 0.5%/0.5mm gamma-evaluation, all iCTs offered comparable accuracy with a better than 99% passing rate, compared to 83% for xCT. The RMF model predictions for RBE for cell death relative to a diagnostic xCT spectrum were 0.82-0.85, 0.85-0.89 and 0.97-1.03 for proton-, helium-, and carbon-CT, respectively. The corresponding RBE for DNA double-strand break induction was generally below one. iCT offers great clinical potential for proton therapy treatment planning by providing superior dose calculation accuracy as well as lower physical and potentially biological dose exposure compared to xCT. For the investigated dose level and ideal detector, proton-CT and helium-CT yielded the best performance.


Assuntos
Carbono/química , Hélio/química , Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Eficiência Biológica Relativa , Tomografia/métodos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Humanos , Método de Monte Carlo , Radiobiologia , Radiometria
16.
Med Phys ; 46(3): e53-e78, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30661238

RESUMO

The biological effectiveness of proton beams relative to photon beams in radiation therapy has been taken to be 1.1 throughout the history of proton therapy. While potentially appropriate as an average value, actual relative biological effectiveness (RBE) values may differ. This Task Group report outlines the basic concepts of RBE as well as the biophysical interpretation and mathematical concepts. The current knowledge on RBE variations is reviewed and discussed in the context of the current clinical use of RBE and the clinical relevance of RBE variations (with respect to physical as well as biological parameters). The following task group aims were designed to guide the current clinical practice: Assess whether the current clinical practice of using a constant RBE for protons should be revised or maintained. Identifying sites and treatment strategies where variable RBE might be utilized for a clinical benefit. Assess the potential clinical consequences of delivering biologically weighted proton doses based on variable RBE and/or LET models implemented in treatment planning systems. Recommend experiments needed to improve our current understanding of the relationships among in vitro, in vivo, and clinical RBE, and the research required to develop models. Develop recommendations to minimize the effects of uncertainties associated with proton RBE for well-defined tumor types and critical structures.


Assuntos
Neoplasias/radioterapia , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Planejamento da Radioterapia Assistida por Computador/normas , Eficiência Biológica Relativa , Humanos , Guias de Prática Clínica como Assunto/normas , Dosagem Radioterapêutica , Relatório de Pesquisa
17.
Int J Radiat Oncol Biol Phys ; 103(2): 297-304, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30647006

RESUMO

PURPOSE: Research in radiation oncology (RO) is imperative to support the discovery of new uses of radiation and improvement of current approaches to radiation delivery and to foster the continued evolution of our field. Therefore, in 2016, the American Society of Radiation Oncology performed an evaluation of research grant funding for RO. METHODS AND MATERIALS: Members of the Society of Chairs of Academic Radiation Oncology Programs (SCAROP) were asked about funded and unfunded grants that were submitted by their departments between the fiscal years 2014 and 2016. Grants were grouped according to broad categories defined by the 2017 American Society of Radiation Oncology Research Agenda. Additionally, active grants in the National Institutes of Health (NIH) Research Portfolio Online Reporting Tools database were collated using RO faculty names. RESULTS: Overall, there were 816 funded (44%) and 1031 unfunded (56%) SCAROP-reported grants. Total grant funding was over $196 million. The US government funded the plurality (42.2%; 345 of 816) of grants compared with nonprofit and industry funders. Investigators from 10 institutions accounted for >75% of funded grants. Of the funded grants, 43.5% were categorized as "genomic influences and targeted therapies." The proportion of funded to unfunded grants was highest within the category of "tumor microenvironment, normal tissue effects, and reducing toxicity" (53.4% funded). "New clinical trial design and big data" had the smallest share of SCAROP grant applications and the lowest percent funded (38.3% of grants). NIH grants to RO researchers in 2014 to 2016 accounted for $85 million in funding. From the 31 responding SCAROP institutions, there was a 28% average success rate for RO proposals submitted to the NIH during this period. CONCLUSIONS: Though RO researchers from responding institutions were relatively successful in obtaining funding, the overall amount awarded remains small. Continued advocacy on behalf of RO is needed, as well as investment to make research careers more attractive areas for emerging faculty.


Assuntos
Pesquisa Biomédica/tendências , Radioterapia (Especialidade)/organização & administração , Sociedades Médicas/organização & administração , Distinções e Prêmios , Escolha da Profissão , Feminino , Humanos , Masculino , National Cancer Institute (U.S.) , Pesquisadores , Apoio à Pesquisa como Assunto , Estados Unidos
18.
Radiat Res ; 169(4): 447-59, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18363426

RESUMO

A kinetic repair-misrepair-fixation (RMF) model is developed to better link double-strand break (DSB) induction to reproductive cell death. Formulas linking linear-quadratic (LQ) model radiosensitivity parameters to DSB induction and repair explicitly account for the contribution to cell killing of unrejoinable DSBs, misrepaired and fixed DSBs, and exchanges formed through intra- and intertrack DSB interactions. Information from Monte Carlo simulations is used to determine the initial yields and complexity of DSBs formed by low- and high-LET radiations. Our analysis of published survival data for human kidney cells suggests that intratrack DSB interactions are negligible for low-LET radiations but increase rapidly with increasing LET. The analysis suggests that no class of DSB is intrinsically unrejoinable or that DSB reparability is not strictly determined by the number of lesions forming the DSB. For radiations with LET >110 keV/mum, the model predicts that the relative cell killing efficiency, per unit absorbed dose, should continue to increase, whereas data from published experiments indicate a reduced cell killing efficiency. This observation suggests that the Monte Carlo simulation overestimates the DSB yield beyond 110 keV/microm or that other biological phenomena not included in the model, such as proximity effects, are important. For 200-250 kVp X rays ( approximately 1.9 keV/microm), only about 1% of the one-track killing is attributed to intratrack binary misrepair interactions. The analysis indicates that the remaining 99% of the lethal damage is due to other types of one-track damage, including possible unrepairable, misrepaired and fixed damage. Compared to the analysis of the X-ray results, 48% of the one-track lethal damage caused by 5.1 MeV alpha particles (approximately 88 keV/microm) is due to intratrack DSB interactions while the remainder is due to other forms of one-track damage.


Assuntos
Sobrevivência Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Método de Monte Carlo , Humanos , Transferência Linear de Energia , Tolerância a Radiação
19.
Int J Radiat Oncol Biol Phys ; 117(5): 1298, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37980146
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA