Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Wound Repair Regen ; 31(5): 613-626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37462279

RESUMO

Delayed tissue repair in the aged presents a major socio-economic and clinical problem. Age-associated delay in wound healing can be attributed to multiple factors, including an increased presence of senescent cells persisting in the wound. Although the transient presence of senescent cells is physiologic during the resolution phase of normal healing, increased senescent cell accumulation with age can negatively impact tissue repair. The objective of the study was to test interventional strategies that could mitigate the negative effect of senescent cell accumulation and possibly improve the age-associated delay in wound healing. We utilised a 3D in vitro senescent fibroblast populated collagen matrix (FPCM) to study cellular events associated with senescence and delayed healing. Senescent fibroblasts showed an increase in anti-apoptotic B-cell lymphoma 2 (BCL-2) family proteins. We hypothesized that reducing the senescent cell population and promoting non-senescent cell functionality would mitigate the negative effect of senescence and improve healing kinetics. BCL-2 inhibition and mitogen stimulation (FGF2) improved healing in the in vitro senescent models. These results were confirmed with an ex vivo human skin biopsy model. These data suggested that modulation of the senescent cell population with soluble factors improved the healing outcome in our in vitro and ex vivo healing models.


Assuntos
Senescência Celular , Cicatrização , Humanos , Idoso , Cicatrização/fisiologia , Senescência Celular/fisiologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/farmacologia
2.
Mol Pharm ; 19(10): 3586-3599, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35640060

RESUMO

Surgery remains the only potentially curative treatment option for pancreatic cancer, but resections are made more difficult by infiltrative disease, proximity of critical vasculature, peritumoral inflammation, and dense stroma. Surgeons are limited to tactile and visual cues to differentiate cancerous tissue from normal tissue. Furthermore, translating preoperative images to the intraoperative setting poses additional challenges for tumor detection, and can result in undetected and unresected lesions. Thus, pancreatic ductal adenocarcinoma (PDAC) has high rates of incomplete resections, and subsequently, disease recurrence. Fluorescence-guided surgery (FGS) has emerged as a method to improve intraoperative detection of cancer and ultimately improve surgical outcomes. Initial clinical trials have demonstrated feasibility of FGS for PDAC, but there are limited targeted probes under investigation for this disease, highlighting the need for development of additional novel biomarkers to reflect the PDAC heterogeneity. MUCIN16 (MUC16) is a glycoprotein that is overexpressed in 60-80% of PDAC. In our previous work, we developed a MUC16-targeted murine antibody near-infrared conjugate, termed AR9.6-IRDye800, that showed efficacy in detecting pancreatic cancer. To build on the translational potential of this imaging probe, a humanized variant of the AR9.6 fluorescent conjugate was developed and investigated herein. This conjugate, termed huAR9.6-IRDye800, showed equivalent binding properties to its murine counterpart. Using an optimized dye:protein ratio of 1:1, in vivo studies demonstrated high tumor to background ratios in MUC16-expressing tumor models, and delineation of tumors in a patient-derived xenograft model. Safety, biodistribution, and toxicity studies were conducted. These studies demonstrated that huAR9.6-IRDye800 was safe, did not yield evidence of histological toxicity, and was well tolerated in vivo. The results from this work suggest that AR9.6-IRDye800 is an efficacious and safe imaging agent for identifying pancreatic cancer intraoperatively through fluorescence-guided surgery.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Antígeno Ca-125/metabolismo , Carcinoma Ductal Pancreático/diagnóstico por imagem , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/cirurgia , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Recidiva Local de Neoplasia , Imagem Óptica/métodos , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/cirurgia , Distribuição Tecidual , Neoplasias Pancreáticas
3.
Surg Endosc ; 36(1): 300-306, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33481111

RESUMO

BACKGROUND: Most complications and adverse events during laparoscopic surgery occur during initial entry into the peritoneal cavity. Among them, preperitoneal insufflation occurs when the insufflation needle is incorrectly placed, and the abdominal wall is insufflated. The objective of this study was to find a range for static pressure which is low enough to allow placement of a Veress needle into the peritoneal space without causing preperitoneal insufflation, yet high enough to separate abdominal viscera from the parietal peritoneum. METHODS: A pressure test was performed on twelve fresh porcine carcasses to determine the minimum preperitoneal insufflation pressure and the minimum initial peritoneal cavity insufflation pressure. Each porcine model had five needle placement categories. One category tested the initial peritoneal cavity insufflation pressure beneath the umbilicus. The four remaining categories tested the preperitoneal insufflation pressure at four different anatomical locations on the abdomen that can be used for initial entry. The minimum initial insufflation pressures from each carcass were then compared to the preperitoneal insufflation pressures to obtain an optimal range for initial insufflation. RESULTS: Increasing the insufflation pressure increased the probability of preperitoneal insufflation. Also, there was a statistically significant difference (p < 0.05) between the initial peritoneal cavity insufflation pressures (8.83 ± 4.19 mmHg) and the lowest preperitoneal pressures (32.54 ± 7.84 mmHg) (mean ± SD). CONCLUSION: Pressures greater than 10 mmHg resulted in initial cavity insufflation and pressures greater than 20 mmHg resulted in preperitoneal insufflation in porcine models. By knowing the minimum pressure required to separate the layers of the abdominal wall, the risk of preperitoneal insufflation can be mitigated while obtaining safe and efficient entry into the peritoneal cavity. The findings in this research are not a guideline for trocar or Veress needle placement, but instead reveal preliminary data which may lead to more studies, technology, etc.


Assuntos
Parede Abdominal , Insuflação , Laparoscopia , Parede Abdominal/cirurgia , Animais , Insuflação/efeitos adversos , Laparoscopia/efeitos adversos , Laparoscopia/métodos , Agulhas , Cavidade Peritoneal , Pneumoperitônio Artificial/efeitos adversos , Pneumoperitônio Artificial/métodos , Suínos
4.
Nano Lett ; 21(3): 1508-1516, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33501831

RESUMO

Following the COVID-19 outbreak, swabs for biological specimen collection were thrust to the forefront of healthcare materials. Swab sample collection and recovery are vital for reducing false negative diagnostic tests, early detection of pathogens, and harvesting DNA from limited biological samples. In this study, we report a new class of nanofiber swabs tipped with hierarchical 3D nanofiber objects produced by expanding electrospun membranes with a solids-of-revolution-inspired gas foaming technique. Nanofiber swabs significantly improve absorption and release of proteins, cells, bacteria, DNA, and viruses from solutions and surfaces. Implementation of nanofiber swabs in SARS-CoV-2 detection reduces the false negative rates at two viral concentrations and identifies SARS-CoV-2 at a 10× lower viral concentration compared to flocked and cotton swabs. The nanofiber swabs show great promise in improving test sensitivity, potentially leading to timely and accurate diagnosis of many diseases.


Assuntos
Teste para COVID-19/instrumentação , COVID-19/diagnóstico , Nanofibras , SARS-CoV-2 , COVID-19/virologia , Teste para COVID-19/métodos , Teste para COVID-19/estatística & dados numéricos , Reações Falso-Negativas , Humanos , Teste de Materiais , Microscopia Eletrônica de Varredura , Nanofibras/ultraestrutura , Nanotecnologia , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/instrumentação , Manejo de Espécimes/métodos , Manejo de Espécimes/estatística & dados numéricos
5.
J Surg Res ; 249: 168-179, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31986359

RESUMO

BACKGROUND: Development of collateral vasculature is key in compensating for arterial occlusions in patients with peripheral artery disease (PAD). We aimed to examine the development of collateral pathways after ligation of native vessels in a porcine model of PAD. METHODS: Right hindlimb ischemia was induced in domestic swine (n = 11) using two versions of arterial ligation. Version 1 (n = 6) consisted of ligation with division of the right external iliac, profunda femoral, and superficial femoral arteries. Version 2 (n = 5) consisted of the ligation of version 1 with additional ligation with division of the right internal iliac artery. Development of collateral pathways was evaluated with standard angiography before arterial ligation and at termination (30 days later). Relative luminal diameter of the arteries supplying the ischemic right hind limb were determined by two-dimensional angiography. RESULTS: The dominant collateral pathway that developed after version 1 ligation connected the right internal iliac artery to the right profunda femoral and then to the right superficial femoral and popliteal artery. Mean luminal diameter of the right internal iliac artery at termination increased by 38% compared with baseline. Two codominant collateral pathways developed in version 2 ligation: (i) from the left profunda femoral artery to the reconstituted right profunda femoral artery and (ii) from the common internal iliac trunk and the left internal iliac artery to the reconstituted right internal iliac artery, which then supplied the right profunda femoral and then the right superficial femoral and popliteal artery. The mean diameter of the left profunda and the left internal iliac artery increased at termination by 26% and 21%, respectively (P < 0.05). CONCLUSIONS: Two versions of hindlimb ischemia induction (right ilio-femoral artery ligation with and without right internal iliac artery ligation) in swine produced differing collateral pathways, along with changes to the diameter of the inflow vessels (i.e., arteriogenesis).


Assuntos
Circulação Colateral/fisiologia , Isquemia/fisiopatologia , Neovascularização Fisiológica/fisiologia , Doença Arterial Periférica/fisiopatologia , Angiografia , Animais , Modelos Animais de Doenças , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/cirurgia , Membro Posterior/irrigação sanguínea , Humanos , Artéria Ilíaca/diagnóstico por imagem , Artéria Ilíaca/cirurgia , Isquemia/diagnóstico por imagem , Isquemia/etiologia , Ligadura/efeitos adversos , Masculino , Doença Arterial Periférica/diagnóstico por imagem , Doença Arterial Periférica/etiologia , Fluxo Sanguíneo Regional/fisiologia , Sus scrofa
6.
Nano Lett ; 19(3): 2059-2065, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30788971

RESUMO

Assembling electrospun nanofibers with controlled alignment into three-dimensional (3D), complex, and predesigned shapes has proven to be a difficult task for regenerative medicine. Herein, we report a novel approach inspired by solids of revolution that transforms two-dimensional (2D) nanofiber mats of a controlled thickness into once-inaccessible 3D objects with predesigned shapes. The 3D objects are highly porous, consisting of layers of aligned nanofibers separated by gaps ranging from several micrometers to several millimeters. Upon compression, the objects are able to recover their original shapes. The porous objects can serve as scaffolds, guiding the organization of cells and producing highly ordered 3D tissue constructs. Additionally, subcutaneous implantation in rats demonstrates that the 3D objects enable rapid cell penetration, new blood vessel formation, and collagen matrix deposition. This new class of 3D hierarchical nanofiber architectures offers promising advancements in both in vitro engineering of complex 3D tissue constructs/models or organs and in vivo tissue repair and regeneration.


Assuntos
Materiais Biocompatíveis/química , Nanofibras/química , Medicina Regenerativa , Engenharia Tecidual , Animais , Materiais Biocompatíveis/síntese química , Células Cultivadas , Colágeno/química , Poliésteres/química , Porosidade , Ratos , Alicerces Teciduais
7.
Mol Pharm ; 16(5): 2011-2020, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916573

RESUMO

Biofilms of multidrug-resistant bacteria in chronic wounds pose a great challenge in wound care. Herein, we report the topical delivery of molecularly engineered antimicrobial peptides using electrospun nanofiber dressings as a carrier for the treatment of biofilms of multidrug-resistant bacteria in diabetic wounds. Molecularly engineered human cathelicidin peptide 17BIPHE2 was successfully encapsulated in the core of pluronic F127/17BIPHE2-PCL core-shell nanofibers. The in vitro release profiles of 17BIPHE2 showed an in initial burst followed by a sustained release over 4 weeks. The peptide nanofiber formulations effectively killed methicillin-resistant Staphylococcus aureus (MRSA) USA300. Similarly, the 17BIPHE2 peptide containing nanofibers could also effectively kill other bacteria including Klebsiella pneumoniae (104 to 106 CFU) and Acinetobacter baumannii (104 to 107 CFU) clinical strains in vitro without showing evident cytotoxicity to skin cells and monocytes. Importantly, 17BIPHE2-containing nanofiber dressings without debridement caused five-magnitude decreases of the MRSA USA300 CFU in a biofilm-containing chronic wound model based on type II diabetic mice. In combination with debridement, 17BIPHE2-containing nanofiber dressings could completely eliminate the biofilms, providing one possible solution to chronic wound treatment. Taken together, the biodegradable nanofiber-based wound dressings developed in this study can be utilized to effectively deliver molecularly engineered peptides to treat biofilm-containing chronic wounds.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bandagens , Biofilmes/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Nanofibras/administração & dosagem , Engenharia de Proteínas , Infecção dos Ferimentos/tratamento farmacológico , Administração Cutânea , Animais , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Sobrevivência Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Liberação Controlada de Fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Nanofibras/química , Poloxâmero/química , Poliésteres/química , Pele/efeitos dos fármacos , Pele/microbiologia , Infecção dos Ferimentos/patologia , Catelicidinas
8.
Nanomedicine ; 13(4): 1435-1445, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28185940

RESUMO

Surgical site infections (SSIs) represent the most common nosocomial infection among surgical patients. In order to prevent SSIs in a sustained manner and lessen side effects, we developed a twisting method for generation of nanofiber-based sutures capable of simultaneous delivery of silver and gentamicin. The prepared sutures are composed of core-sheath nanofibers with gentamicin/pluronic F127 in the core and silver/PCL in the sheath produced by co-axial electrospinning. The diameters of obtained sutures range from ~80 µm to ~1.2 mm. The in vitro release profiles of silver and gentamicin exhibit an initial burst followed by a sustained release over 5 weeks. The co-encapsulated sutures were able to kill bacteria much more effectively than gentamicin or silver alone loaded nanofiber sutures, without showing obvious impact on proliferation and migration of dermal fibroblasts and keratinocytes. The gentamicin and silver co-loaded PCL nanofiber sutures may hold great potential for prevention of SSIs.


Assuntos
Sistemas de Liberação de Medicamentos , Gentamicinas/química , Nanofibras/química , Prata/química , Suturas , Antibacterianos/química , Linhagem Celular , Infecção Hospitalar/tratamento farmacológico , Liberação Controlada de Fármacos , Humanos , Testes de Sensibilidade Microbiana , Poliésteres/química , Pseudomonas aeruginosa/efeitos dos fármacos , Infecção da Ferida Cirúrgica/tratamento farmacológico
9.
J Surg Res ; 187(1): 334-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24169144

RESUMO

BACKGROUND: Applications of plasma-derived human fibrin sealants (pdhFS) have been limited because of cost, limited supply of pathogen-screened plasma, the need for bioengineering improvements, and regulatory issues associated with federal approval. We describe a totally recombinant human fibrin sealant (rhFS), which may engender an abundant, safe, and cost-effective supply of efficacious fibrin sealant. MATERIALS AND METHODS: A first-generation rhFS made from recombinant human fibrinogen (rhFI; produced in the milk of transgenic cows), activated recombinant human factor XIII (rhFXIIIa; produced in yeast), and recombinant human thrombin (rhFIIa; purchased, made in animal cell culture) was formulated using thromboelastography (TEG). The hemostatic efficacy of rhFS versus commercial pdhFS was compared in a nonlethal porcine hepatic wedge excision model. RESULTS: The maximal clot strength of rhFS measured in vitro by TEG was not statistically different than that of pdhFS. TEG analysis also showed that the rhFS gained strength more quickly as reflected by a steeper α angle; however, the rhFS achieved this clot strength with a 5-fold lower factor I content than the pdhFS. When these fibrin sealants were studied in a porcine hepatic wedge excision model, the hemostatic scores of the rhFS were equivalent or better than that of the pdhFS. CONCLUSIONS: The bioengineered rhFS had equivalent or better hemostatic efficacy than the pdhFS in a nonlethal hemorrhage model, despite the factor I concentration in the rhFS being about one-fifth that in the pdhFS. Because the rhFS is amenable to large-scale production, the rhFS has the potential to be more economical and abundant than the pdhFS, while having a decreased risk of blood-borne pathogen transmission.


Assuntos
Adesivo Tecidual de Fibrina/farmacologia , Hemorragia/tratamento farmacológico , Lacerações/tratamento farmacológico , Fígado/lesões , Proteínas Recombinantes/farmacologia , Animais , Animais Geneticamente Modificados , Bovinos , Células Cultivadas , Modelos Animais de Doenças , Fator XIIIa/genética , Fator XIIIa/farmacologia , Fibrinogênio/genética , Fibrinogênio/farmacologia , Hemostasia , Humanos , Fígado/efeitos dos fármacos , Masculino , Proteínas Recombinantes/genética , Sus scrofa , Tromboelastografia , Trombina/genética , Trombina/farmacologia , Leveduras
10.
Wound Repair Regen ; 22(1): 134-40, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24393161

RESUMO

The availability of fibroblasts that express green fluorescent protein (GFP) would be of interest for the monitoring of cell growth, migration, contraction, and other processes within the fibroblast-populated collagen matrix and other culture systems. A plasmid lentiviral vector-GFP (pLV-GFP) was utilized for gene delivery to produce primary human foreskin fibroblasts (HFFs) that stably express GFP. Cell morphology, cell migration, and collagen contraction were compared between nontransduced HFFs and transduced GFP-HFFs; no differences were observed. Immunocytochemical staining showed no differences in cell morphology between nontransduced and GFP-HFFs in both two-dimensional and three-dimensional culture systems. Furthermore, there was no significant difference in cellular population growth within the collagen matrix populated with nontransduced vs. GFP-HFFs. Within the limits of our assays, we conclude that transduction of GFP into HFFs did not alter the observed properties of HFFs compared with nontransduced fibroblasts. The GFP-HFFs may represent a new tool for the convenient monitoring of living primary fibroblast processes in two-dimensional or three-dimensional culture.


Assuntos
Técnicas de Cultura de Células , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Prepúcio do Pênis/citologia , Proteínas de Fluorescência Verde/metabolismo , Substâncias Luminescentes/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Colágeno/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino
11.
Life Sci ; 351: 122783, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38848945

RESUMO

The increasing global prevalence of chronic wounds underscores the growing importance of developing effective animal models for their study. This review offers a critical evaluation of the strengths and limitations of rat models frequently employed in chronic wound research and proposes potential improvements. It explores these models in the context of key comorbidities, including diabetes, venous and arterial insufficiency, pressure-induced blood flow obstruction, and infections. Additionally, the review examines important wound factors including age, sex, smoking, and the impact of anesthetic and analgesic drugs, acknowledging their substantial effects on research outcomes. A thorough understanding of these variables is crucial for refining animal models and can provide valuable insights for future research endeavors.


Assuntos
Modelos Animais de Doenças , Cicatrização , Animais , Ratos , Cicatrização/fisiologia , Doença Crônica , Ferimentos e Lesões/patologia , Humanos
12.
Bioact Mater ; 38: 154-168, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38721595

RESUMO

Effective therapies are urgently needed to stabilize patients with marginally compressible junctional hemorrhage long enough to get them to the hospital alive. Herein, we report injectable and rapidly expandable cryogels consisting of polyacrylamide and thrombin (AT cryogels) created by cryo-polymerization for the efficient management of lethal junctional hemorrhage in swine. The produced cryogels have small pore sizes and highly interconnected porous architecture with robust mechanical strength. The cryogels exhibit rapid shape memory properties and prove to be resilient against fatigue. These cryogels also show high water/blood absorption capacity, fast blood clotting effect, and enhanced adhesion of red blood cells and platelets in vitro. Further, in vivo, hemostatic efficacy tests in a lethal swine junctional hemorrhage model suggest that treatment with AT cryogels, especially AT-2 cryogels, achieves the least blood loss and the highest survival rate (100 %) compared to currently employed products such as XStat® and combat gauze. The high hemostatic performance of the cryogels may be attributed to highly interconnected porous architecture with small pore size and the use of thrombin as a pro-coagulant agent. Collectively, injectable and rapidly expandable thrombin-decorated polyacrylamide-based cryogels show significant promise as hemostatic material, offering effective management of marginally compressible junctional hemorrhages in prehospital settings.

13.
Biomacromolecules ; 14(1): 169-78, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23215461

RESUMO

Human fibrinogen is a biomaterial used in surgical tissue sealants, scaffolding for tissue engineering, and wound healing. Here we report on the post-translational structure and functionality of recombinant human FI (rFI) made at commodity levels in the milk of transgenic dairy cows. Relative to plasma-derived fibrinogen (pdFI), rFI predominantly contained a simplified, neutral carbohydrate structure and >4-fold higher levels of the γ'-chain transcriptional variant that has been reported to bind thrombin and Factor XIII. In spite of these differences, rFI and pdFI were kinetically similar with respect to the thrombin-catalyzed formation of protofibrils and Factor XIIIa-mediated formation of cross-linked fibrin polymer. However, electron microscopy showed rFI produced fibrin with much thicker fibers with less branching than pdFI. In vivo studies in a swine liver transection model showed that, relative to pdFI, rFI made a denser, more strongly wound-adherent fibrin clot that more rapidly established hemostasis.


Assuntos
Coagulação Sanguínea/fisiologia , Fibrina/síntese química , Fibrinogênio/síntese química , Proteínas Recombinantes/síntese química , Cicatrização/fisiologia , Animais , Animais Geneticamente Modificados , Coagulação Sanguínea/efeitos dos fármacos , Bovinos , Fibrina/administração & dosagem , Fibrinogênio/administração & dosagem , Humanos , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/química , Suínos , Cicatrização/efeitos dos fármacos
14.
Biomedicines ; 11(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37626695

RESUMO

The suitability of an animal model for use in studying human diseases relies heavily on the similarities between the two species at the genetic, epigenetic, and metabolic levels. However, there is a lack of consistent data from different animal models at each level to evaluate this suitability. With the availability of genome sequences for many mammalian species, it is now possible to compare animal models based on genomic similarities. Herein, we compare the coding sequences (CDSs) of five mammalian models, including rhesus macaque, marmoset, pig, mouse, and rat models, with human coding sequences. We identified 10,316 conserved CDSs across the five organisms and the human genome based on sequence similarity. Mapping the human-disease-associated single-nucleotide polymorphisms (SNPs) from these conserved CDSs in each species has identified species-specific associations with various human diseases. While associations with a disease such as colon cancer were prevalent in multiple model species, the rhesus macaque showed the most model-specific human disease associations. Based on the percentage of disease-associated SNP-containing genes, marmoset models are well suited to study many human ailments, including behavioral and cardiovascular diseases. This study demonstrates a genomic similarity evaluation of five animal models against human CDSs that could help investigators select a suitable animal model for studying their target disease.

15.
Dis Model Mech ; 16(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36579622

RESUMO

The 5-year survival of pancreatic cancer (PC) remains low. Murine models may not adequately mimic human PC and can be too small for medical device development. A large-animal PC model could address these issues. We induced and characterized pancreatic tumors in Oncopigs (transgenic swine containing KRASG12D and TP53R167H). The oncopigs underwent injection of adenovirus expressing Cre recombinase (AdCre) into one of the main pancreatic ducts. Resultant tumors were characterized by histology, cytokine expression, exome sequencing and transcriptome analysis. Ten of 14 Oncopigs (71%) had gross tumor within 3 weeks. At necropsy, all of these subjects had gastric outlet obstruction secondary to pancreatic tumor and phlegmon. Oncopigs with injections without Cre recombinase and wild-type pigs with AdCre injection did not show notable effect. Exome and transcriptome analysis of the porcine pancreatic tumors revealed similarity to the molecular signatures and pathways of human PC. Although further optimization and validation of this porcine PC model would be beneficial, it is anticipated that this model will be useful for focused research and development of diagnostic and therapeutic technologies for PC. This article has an associated First Person interview with the joint first authors of the paper.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Suínos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/patologia , Animais Geneticamente Modificados , Perfilação da Expressão Gênica , Carcinoma Ductal Pancreático/patologia , Proteína Supressora de Tumor p53 , Neoplasias Pancreáticas
16.
Cancer Lett ; 561: 216150, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36997106

RESUMO

Pancreatic cancer is difficult to resect due to its unique challenges, often leading to incomplete tumor resections. Fluorescence-guided surgery (FGS), also known as intraoperative molecular imaging and optical surgical navigation, is an intraoperative tool that can aid surgeons in complete tumor resection through an increased ability to detect the tumor. To target the tumor, FGS contrast agents rely on biomarkers aberrantly expressed in malignant tissue compared to normal tissue. These biomarkers allow clinicians to identify the tumor and its stage before surgical resection and provide a contrast agent target for intraoperative imaging. Mucins, a family of glycoproteins, are upregulated in malignant tissue compared to normal tissue. Therefore, these proteins may serve as biomarkers for surgical resection. Intraoperative imaging of mucin expression in pancreatic cancer can potentially increase the number of complete resections. While some mucins have been studied for FGS, the potential ability to function as a biomarker target extends to the entire mucin family. Therefore, mucins are attractive proteins to investigate more broadly as FGS biomarkers. This review summarizes the biomarker traits of mucins and their potential use in FGS for pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Cirurgia Assistida por Computador , Humanos , Meios de Contraste , Fluorescência , Mucinas , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Cirurgia Assistida por Computador/métodos , Proteínas , Imagem Óptica/métodos , Neoplasias Pancreáticas
17.
ACS Nano ; 17(4): 3847-3864, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779870

RESUMO

Postoperative abdominal adhesions are a common problem after surgery and can produce serious complications. Current antiadhesive strategies focus mostly on physical barriers and are unsatisfactory and inefficient. In this study, we designed and synthesized advanced injectable cream-like hydrogels with multiple functionalities, including rapid gelation, self-healing, antioxidation, anti-inflammation, and anti-cell adhesion. The multifunctional hydrogels were facilely formed by the conjugation reaction of epigallocatechin-3-gallate (EGCG) and hyaluronic acid (HA)-based microgels and poly(vinyl alcohol) (PVA) based on the dynamic boronic ester bond. The physicochemical properties of the hydrogels including antioxidative and anti-inflammatory activities were systematically characterized. A mouse cecum-abdominal wall adhesion model was implemented to investigate the efficacy of our microgel-based hydrogels in preventing postoperative abdominal adhesions. The hydrogels, with a high molecular weight HA, significantly decreased the inflammation, oxidative stress, and fibrosis and reduced the abdominal adhesion formation, compared to the commercial Seprafilm group or Injury-only group. Label-free quantitative proteomics analysis demonstrated that S100A8 and S100A9 expressions were associated with adhesion formation; the microgel-containing hydrogels inhibited these expressions. The microgel-containing hydrogels with multifunctionality decreased the formation of postoperative intra-abdominal adhesions in a murine model, demonstrating promise for clinical applications.


Assuntos
Parede Abdominal , Microgéis , Camundongos , Animais , Hidrogéis/química , Parede Abdominal/patologia , Parede Abdominal/cirurgia , Aderências Teciduais/prevenção & controle , Aderências Teciduais/patologia , Inflamação/patologia
18.
Front Oncol ; 12: 788038, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35186735

RESUMO

In this mini review the status, advantages, and disadvantages of large animal modeling of breast cancer (BC) will be discussed. While most older studies of large animal BC models utilized canine and feline subjects, more recently there has been interest in development of porcine BC models, with some early promising results for modeling human disease. Widely used rodent models of BC were briefly reviewed to give context to the work on the large animal BC models. Availability of large animal BC models could provide additional tools for BC research, including availability of human-sized subjects and BC models with greater biologic relevance.

19.
Acta Biomater ; 146: 211-221, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35513306

RESUMO

Accurate and rapid point-of-care tissue and microbiome sampling is critical for early detection of cancers and infectious diseases and often result in effective early intervention and prevention of disease spread. In particular, the low prevalence of Barrett's and gastric premalignancy in the Western world makes population-based endoscopic screening unfeasible and cost-ineffective. Herein, we report a method that may be useful for prescreening the general population in a minimally invasive way using a swallowable, re-expandable, ultra-absorbable, and retrievable nanofiber cuboid and sphere produced by electrospinning, gas-foaming, coating, and crosslinking. The water absorption capacity of the cuboid- and sphere-shaped nanofiber objects is shown ∼6000% and ∼2000% of their dry mass. In contrast, unexpanded semicircular and square nanofiber membranes showed <500% of their dry mass. Moreover, the swallowable sphere and cuboid were able to collect and release more bacteria, viruses, and cells/tissues from solutions as compared with unexpanded scaffolds. In addition to that, an expanded sphere shows higher cell collection capacity from the esophagus inner wall as compared with the unexpanded nanofiber membrane. Taken together, the nanofiber capsules developed in this study could provide a minimally invasive method of collecting biological samples from the duodenal, gastric, esophagus, and oropharyngeal sites, potentially leading to timely and accurate diagnosis of many diseases. STATEMENT OF SIGNIFICANCE: Recently, minimally invasive technologies have gained much attention in tissue engineering and disease diagnosis. In this study, we engineered a swallowable and retrievable electrospun nanofiber capsule serving as collection device to collect specimens from internal organs in a minimally invasive manner. The sample collection device could be an alternative endoscopy to collect the samples from internal organs like jejunum, stomach, esophagus, and oropharynx without any sedation. The newly engineered nanofiber capsule could be used to collect, bacteria, virus, fluids, and cells from the abovementioned internal organs. In addition, the biocompatible and biodegradable nanofiber capsule on a string could exhibit a great sample collection capacity for the primary screening of Barret Esophagus, acid reflux, SARS-COVID-19, Helicobacter pylori, and gastric cancer.


Assuntos
Esôfago de Barrett , COVID-19 , Nanofibras , Esôfago de Barrett/diagnóstico , Esôfago de Barrett/microbiologia , Esôfago de Barrett/patologia , Cápsulas , Humanos
20.
PLoS One ; 17(2): e0263869, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35176067

RESUMO

The pig skin architecture and physiology are similar to those of humans. Thus, the pig model is very valuable for studying skin biology and testing therapeutics. The single-cell RNA sequencing (scRNA-seq) technology allows quantitatively analyzing cell types, compositions, states, signaling, and receptor-ligand interactome at single-cell resolution and at high throughput. scRNA-seq has been used to study mouse and human skins. However, studying pig skin with scRNA-seq is still rare. A critical step for successful scRNA-seq is to obtain high-quality single cells from the pig skin tissue. Here we report a robust method for isolating and cryopreserving pig skin single cells for scRNA-seq. We showed that pig skin could be efficiently dissociated into single cells with high cell viability using the Miltenyi Human Whole Skin Dissociation kit and the Miltenyi gentleMACS Dissociator. Furthermore, the obtained single cells could be cryopreserved using 90% FBS + 10% DMSO without causing additional cell death, cell aggregation, or changes in gene expression profiles. Using the developed protocol, we were able to identify all the major skin cell types. The protocol and results from this study are valuable for the skin research scientific community.


Assuntos
Criopreservação/métodos , Análise de Célula Única/métodos , Pele/citologia , Pele/metabolismo , Manejo de Espécimes/métodos , Transcriptoma , Animais , Perfilação da Expressão Gênica , Suínos , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA