Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cell ; 143(5): 761-73, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21111236

RESUMO

The functional consequences of signaling receptor endocytosis are determined by the endosomal sorting of receptors between degradation and recycling pathways. How receptors recycle efficiently, in a sequence-dependent manner that is distinct from bulk membrane recycling, is not known. Here, in live cells, we visualize the sorting of a prototypical sequence-dependent recycling receptor, the beta-2 adrenergic receptor, from bulk recycling proteins and the degrading delta-opioid receptor. Our results reveal a remarkable diversity in recycling routes at the level of individual endosomes, and indicate that sequence-dependent recycling is an active process mediated by distinct endosomal subdomains distinct from those mediating bulk recycling. We identify a specialized subset of tubular microdomains on endosomes, stabilized by a highly localized but dynamic actin machinery, that mediate this sorting, and provide evidence that these actin-stabilized domains provide the physical basis for a two-step kinetic and affinity-based model for protein sorting into the sequence-dependent recycling pathway.


Assuntos
Actinas/metabolismo , Endossomos/metabolismo , Transporte Proteico , Linhagem Celular , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Humanos , Cinética , Estrutura Terciária de Proteína , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Opioides delta/metabolismo
2.
Cell ; 139(5): 907-19, 2009 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-19913287

RESUMO

During meiosis, each chromosome must pair with its unique homologous partner, a process that usually culminates with the formation of the synaptonemal complex (SC). In the nematode Caenorhabditis elegans, special regions on each chromosome known as pairing centers are essential for both homologous pairing and synapsis. We report that during early meiosis, pairing centers establish transient connections to the cytoplasmic microtubule network. These connections through the intact nuclear envelope require the SUN/KASH domain protein pair SUN-1 and ZYG-12. Disruption of microtubules inhibits chromosome pairing, indicating that these connections promote interhomolog interactions. Dynein activity is essential to license formation of the SC once pairing has been accomplished, most likely by overcoming a barrier imposed by the chromosome-nuclear envelope connection. Our findings thus provide insight into how homolog pairing is accomplished in meiosis and into the mechanisms regulating synapsis so that it occurs selectively between homologs. For a video summary of this article, see the PaperFlick file with the Supplemental Data available online.


Assuntos
Caenorhabditis elegans/citologia , Pareamento Cromossômico , Meiose , Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos , Dineínas/metabolismo , Prófase Meiótica I , Receptores Citoplasmáticos e Nucleares/metabolismo
3.
PLoS Genet ; 16(2): e1008640, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32092049

RESUMO

Meiotic recombination is essential for faithful segregation of homologous chromosomes during gametogenesis. The progression of recombination is associated with dynamic changes in meiotic chromatin structures. However, whether Sycp2, a key structural component of meiotic chromatin, is required for the initiation of meiotic recombination is still unclear in vertebrates. Here, we describe that Sycp2 is required for assembly of the synaptonemal complex and early meiotic events in zebrafish spermatocytes. Our genetic screening by N-ethyl-N-nitrosourea mutagenesis revealed that ietsugu (its), a mutant zebrafish line with an aberrant splice site in the sycp2 gene, showed a defect during meiotic prophase I. The its mutation appeared to be a hypomorphic mutation compared to sycp2 knockout mutations generated by TALEN mutagenesis. Taking advantage of these sycp2 hypomorphic and knockout mutant lines, we demonstrated that Sycp2 is required for the assembly of the synaptonemal complex that is initiated in the vicinity of telomeres in wild-type zebrafish spermatocytes. Accordingly, homologous pairing, the foci of the meiotic recombinases Dmc1/Rad51 and RPA, and γH2AX signals were largely diminished in sycp2 knockout spermatocytes. Taken together, our data indicate that Sycp2 plays a critical role in not only the assembly of the synaptonemal complex, but also early meiotic recombination and homologous pairing, in vertebrates.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Recombinação Homóloga , Proteínas Nucleares/metabolismo , Espermatócitos/metabolismo , Complexo Sinaptonêmico/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/genética , Técnicas de Inativação de Genes , Masculino , Mutação , Proteínas Nucleares/genética , Complexo Sinaptonêmico/genética , Proteínas de Peixe-Zebra/genética
4.
PLoS Genet ; 16(11): e1008968, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175901

RESUMO

In the two cell divisions of meiosis, diploid genomes are reduced into complementary haploid sets through the discrete, two-step removal of chromosome cohesion, a task carried out in most eukaryotes by protecting cohesion at the centromere until the second division. In eukaryotes without defined centromeres, however, alternative strategies have been innovated. The best-understood of these is found in the nematode Caenorhabditis elegans: after the single off-center crossover divides the chromosome into two segments, or arms, several chromosome-associated proteins or post-translational modifications become specifically partitioned to either the shorter or longer arm, where they promote the correct timing of cohesion loss through as-yet unknown mechanisms. Here, we investigate the meiotic axis HORMA-domain protein HIM-3 and show that it becomes phosphorylated at its C-terminus, within the conserved "closure motif" region bound by the related HORMA-domain proteins HTP-1 and HTP-2. Binding of HTP-2 is abrogated by phosphorylation of the closure motif in in vitro assays, strongly suggesting that in vivo phosphorylation of HIM-3 likely modulates the hierarchical structure of the chromosome axis. Phosphorylation of HIM-3 only occurs on synapsed chromosomes, and similarly to other previously-described phosphorylated proteins of the synaptonemal complex, becomes restricted to the short arm after designation of crossover sites. Regulation of HIM-3 phosphorylation status is required for timely disassembly of synaptonemal complex central elements from the long arm, and is also required for proper timing of HTP-1 and HTP-2 dissociation from the short arm. Phosphorylation of HIM-3 thus plays a role in establishing the identity of short and long arms, thereby contributing to the robustness of the two-step chromosome segregation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Complexo Sinaptonêmico/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/genética , Pareamento Cromossômico , Segregação de Cromossomos , Cromossomos , Meiose/fisiologia , Fosforilação , Prófase/fisiologia , Domínios Proteicos
5.
J Cell Sci ; 133(24)2020 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-33199519

RESUMO

During the transition from pluripotency to a lineage-committed state, chromatin undergoes large-scale changes in structure, involving covalent modification of histone tails, use of histone variants and gene position changes with respect to the nuclear periphery. Here, using high-resolution microscopy and quantitative image analysis, we surveyed a panel of histone modifications for changes in nuclear peripheral enrichment during differentiation of human embryonic stem cells to a trophoblast-like lineage. We found two dynamic modifications at the nuclear periphery, acetylation of histone H2A.Z (H2A.Zac), and dimethylation of histone H3 at lysine 9 (H3K9me2). We demonstrate successive peripheral enrichment of these markers, with H2A.Zac followed by H3K9me2, over the course of 4 days. We find that H3K9me2 increases concomitantly with, but independently of, expression of lamin A, since deletion of lamin A did not affect H3K9me2 enrichment. We further show that inhibition of histone deacetylases causes persistent and increased H2A.Z acetylation at the periphery, delayed H3K9me2 enrichment and failure to differentiate. Our results show a concerted change in the nature of peripheral chromatin occurs upon differentiation into the trophoblast state.


Assuntos
Células-Tronco Embrionárias Humanas , Diferenciação Celular , Cromatina , Histonas/genética , Humanos , Trofoblastos
6.
PLoS Genet ; 15(3): e1008004, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30921322

RESUMO

Germ cell immortality, or transgenerational maintenance of the germ line, could be promoted by mechanisms that could occur in either mitotic or meiotic germ cells. Here we report for the first time that the GSP-2 PP1/Glc7 phosphatase promotes germ cell immortality. Small RNA-induced genome silencing is known to promote germ cell immortality, and we identified a separation-of-function allele of C. elegans gsp-2 that is compromised for germ cell immortality and is also defective for small RNA-induced genome silencing and meiotic but not mitotic chromosome segregation. Previous work has shown that GSP-2 is recruited to meiotic chromosomes by LAB-1, which also promoted germ cell immortality. At the generation of sterility, gsp-2 and lab-1 mutant adults displayed germline degeneration, univalents, histone methylation and histone phosphorylation defects in oocytes, phenotypes that mirror those observed in sterile small RNA-mediated genome silencing mutants. Our data suggest that a meiosis-specific function of GSP-2 ties small RNA-mediated silencing of the epigenome to germ cell immortality. We also show that transgenerational epigenomic silencing at hemizygous genetic elements requires the GSP-2 phosphatase, suggesting a functional link to small RNAs. Given that LAB-1 localizes to the interface between homologous chromosomes during pachytene, we hypothesize that small localized discontinuities at this interface could promote genomic silencing in a manner that depends on small RNAs and the GSP-2 phosphatase.


Assuntos
Células Germinativas/metabolismo , Proteína Fosfatase 1/fisiologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Genoma , Células Germinativas/fisiologia , Meiose/fisiologia , Prófase Meiótica I/fisiologia , Metilação , Monoéster Fosfórico Hidrolases , Proteína Fosfatase 1/metabolismo , Interferência de RNA/fisiologia , RNA Interferente Pequeno
7.
Nucleic Acids Res ; 43(21): 10200-12, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26319017

RESUMO

The α, ß and γ isoforms of mammalian heterochromatin protein 1 (HP1) selectively bind to methylated lysine 9 of histone H3 via their chromodomains. Although the phenotypes of HP1-knockout mice are distinct for each isoform, the molecular mechanisms underlying HP1 isoform-specific function remain elusive. In the present study, we found that in contrast to HP1α, HP1γ could not bind tri-methylated H3 lysine 9 in a reconstituted tetra-nucleosomes when the nucleosomes were in an uncompacted state. The hinge region connecting HP1's chromodomain and chromoshadow domain contributed to the distinct recognition of the nucleosomes by HP1α and HP1γ. HP1γ, but not HP1α, was strongly enhanced in selective binding to tri-methylated lysine 9 in histone H3 by the addition of Mg(2+) or linker histone H1, which are known to induce compaction of nucleosomes. We propose that this novel property of HP1γ recognition of lysine 9 in the histone H3 tail in different nucleosome structures plays a role in reading the histone code.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Homólogo 5 da Proteína Cromobox , Histonas/química , Humanos , Lisina/metabolismo , Magnésio/química , Metilação , Ligação Proteica , Isoformas de Proteínas/metabolismo , Multimerização Proteica
8.
Nucleic Acids Res ; 43(19): e126, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26101260

RESUMO

Elucidating the dynamic organization of nuclear RNA foci is important for understanding and manipulating these functional sites of gene expression in both physiological and pathological states. However, such studies have been difficult to establish in vivo as a result of the absence of suitable RNA imaging methods. Here, we describe a high-resolution fluorescence RNA imaging method, ECHO-liveFISH, to label endogenous nuclear RNA in living mice and chicks. Upon in vivo electroporation, exciton-controlled sequence-specific oligonucleotide probes revealed focally concentrated endogenous 28S rRNA and U3 snoRNA at nucleoli and poly(A) RNA at nuclear speckles. Time-lapse imaging reveals steady-state stability of these RNA foci and dynamic dissipation of 28S rRNA concentrations upon polymerase I inhibition in native brain tissue. Confirming the validity of this technique in a physiological context, the in vivo RNA labeling did not interfere with the function of target RNA nor cause noticeable cytotoxicity or perturbation of cellular behavior.


Assuntos
Hibridização in Situ Fluorescente/métodos , RNA/análise , Animais , Movimento Celular , Núcleo Celular/genética , Cerebelo/química , Cerebelo/citologia , Embrião de Galinha , Células HeLa , Humanos , Células MCF-7 , Camundongos Endogâmicos ICR , Sondas de Oligonucleotídeos/síntese química , Sondas de Oligonucleotídeos/química , Imagem Óptica , RNA/metabolismo , RNA Ribossômico 28S/análise , RNA Nucleolar Pequeno/análise , Imagem com Lapso de Tempo
9.
PLoS Genet ; 10(10): e1004638, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340746

RESUMO

Prior to the meiotic divisions, dynamic chromosome reorganizations including pairing, synapsis, and recombination of maternal and paternal chromosome pairs must occur in a highly regulated fashion during meiotic prophase. How chromosomes identify each other's homology and exclusively pair and synapse with their homologous partners, while rejecting illegitimate synapsis with non-homologous chromosomes, remains obscure. In addition, how the levels of recombination initiation and crossover formation are regulated so that sufficient, but not deleterious, levels of DNA breaks are made and processed into crossovers is not understood well. We show that in Caenorhabditis elegans, the highly conserved Serine/Threonine protein phosphatase PP4 homolog, PPH-4.1, is required independently to carry out four separate functions involving meiotic chromosome dynamics: (1) synapsis-independent chromosome pairing, (2) restriction of synapsis to homologous chromosomes, (3) programmed DNA double-strand break initiation, and (4) crossover formation. Using quantitative imaging of mutant strains, including super-resolution (3D-SIM) microscopy of chromosomes and the synaptonemal complex, we show that independently-arising defects in each of these processes in the absence of PPH-4.1 activity ultimately lead to meiotic nondisjunction and embryonic lethality. Interestingly, we find that defects in double-strand break initiation and crossover formation, but not pairing or synapsis, become even more severe in the germlines of older mutant animals, indicating an increased dependence on PPH-4.1 with increasing maternal age. Our results demonstrate that PPH-4.1 plays multiple, independent roles in meiotic prophase chromosome dynamics and maintaining meiotic competence in aging germlines. PP4's high degree of conservation suggests it may be a universal regulator of meiotic prophase chromosome dynamics.


Assuntos
Pareamento Cromossômico/genética , Segregação de Cromossomos/genética , Fosfoproteínas Fosfatases/genética , Animais , Caenorhabditis elegans , Troca Genética , Quebras de DNA de Cadeia Dupla , Recombinação Homóloga/genética , Meiose/genética , Complexo Sinaptonêmico/genética
10.
PLoS Genet ; 8(8): e1002880, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912597

RESUMO

During meiosis, chromosomes align with their homologous pairing partners and stabilize this alignment through assembly of the synaptonemal complex (SC). Since the SC assembles cooperatively yet is indifferent to homology, pairing and SC assembly must be tightly coordinated. We identify HAL-2 as a key mediator in this coordination, showing that HAL-2 promotes pairing largely by preventing detrimental effects of SC precursors (SYP proteins). hal-2 mutants fail to establish pairing and lack multiple markers of chromosome movement mediated by pairing centers (PCs), chromosome sites that link chromosomes to cytoplasmic microtubules through nuclear envelope-spanning complexes. Moreover, SYP proteins load inappropriately along individual unpaired chromosomes in hal-2 mutants, and markers of PC-dependent movement and function are restored in hal-2; syp double mutants. These and other data indicate that SYP proteins can impede pairing and that HAL-2 promotes pairing predominantly but not exclusively by counteracting this inhibition, thereby enabling activation and regulation of PC function. HAL-2 concentrates in the germ cell nucleoplasm and colocalizes with SYP proteins in nuclear aggregates when SC assembly is prevented. We propose that HAL-2 functions to shepherd SYP proteins prior to licensing of SC assembly, preventing untimely interactions between SC precursors and chromosomes and allowing sufficient accumulation of precursors for rapid cooperative assembly upon homology verification.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Pareamento Cromossômico/genética , Proteínas Nucleares/genética , Precursores de Proteínas/metabolismo , Complexo Sinaptonêmico/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Microtúbulos , Mutação , Membrana Nuclear , Proteínas Nucleares/metabolismo , Precursores de Proteínas/genética , Complexo Sinaptonêmico/genética
11.
Blood ; 118(5): 1370-3, 2011 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-21622648

RESUMO

Platelets are small anucleate blood cells that aggregate to seal leaks at sites of vascular injury and are important in the pathology of atherosclerosis, acute coronary syndromes, rheumatoid arthritis, cancer, and the regulation of angiogenesis. In all cases, platelet aggregation requires release of stored proteins from α-granules. However, how proteins with potentially antagonistic functions are packaged within α-granules is controversial. One possibility is the packaging of functional agonists and antagonists into different α-granule populations. By quantitative immunofluorescence colocalization, we found that pair-wise comparisons of 15 angiogenic-relevant α-granule proteins displayed little, if any, pattern of functional coclustering. Rather, the data suggested a Gaussian distribution indicative of stochastic protein delivery to individual granules. The apparent physiologic paradox raised by these data may be explained through alternate mechanisms, such as differential content release through incomplete granule fusion or dampened and balanced regulatory networks brought about by the corelease of antagonistic factors.


Assuntos
Plaquetas/metabolismo , Proteínas/metabolismo , Vesículas Secretórias/metabolismo , Plaquetas/ultraestrutura , Ligante de CD40/metabolismo , Análise por Conglomerados , Imunofluorescência , Humanos , Distribuição Normal , Selectina-P/metabolismo , Proteínas/fisiologia , Proteínas R-SNARE/metabolismo , Distribuição Tecidual
12.
Proc Natl Acad Sci U S A ; 107(37): 16016-22, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20705899

RESUMO

Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components. We demonstrate a new microscope platform, OMX, that enables subsecond, multicolor four-dimensional data acquisition and also provides access to subdiffraction structured illumination imaging. Using this platform to image chromosome movement during a complete yeast cell cycle at one 3D image stack per second reveals an unexpected degree of photosensitivity of fluorophore-containing cells. To avoid perturbation of cell division, excitation levels had to be attenuated between 100 and 10,000× below the level normally used for imaging. We show that an image denoising algorithm that exploits redundancy in the image sequence over space and time allows recovery of biological information from the low light level noisy images while maintaining full cell viability with no fading.


Assuntos
Microscopia de Fluorescência/métodos , Algoritmos , Animais , Sobrevivência Celular , Drosophila melanogaster/citologia , Saccharomyces cerevisiae/citologia , Software
13.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35323874

RESUMO

The nematode Caenorhabditis elegans has shed light on many aspects of eukaryotic biology, including genetics, development, cell biology, and genomics. A major factor in the success of C. elegans as a model organism has been the availability, since the late 1990s, of an essentially gap-free and well-annotated nuclear genome sequence, divided among 6 chromosomes. In this review, we discuss the structure, function, and biology of C. elegans chromosomes and then provide a general perspective on chromosome biology in other diverse nematode species. We highlight malleable chromosome features including centromeres, telomeres, and repetitive elements, as well as the remarkable process of programmed DNA elimination (historically described as chromatin diminution) that induces loss of portions of the genome in somatic cells of a handful of nematode species. An exciting future prospect is that nematode species may enable experimental approaches to study chromosome features and to test models of chromosome evolution. In the long term, fundamental insights regarding how speciation is integrated with chromosome biology may be revealed.


Assuntos
Caenorhabditis elegans , Nematoides , Animais , Caenorhabditis elegans/genética , Centrômero , Cromatina/genética , Cromossomos/genética , Nematoides/genética , Telômero/genética
14.
Elife ; 112022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35758641

RESUMO

In the first meiotic cell division, proper segregation of chromosomes in most organisms depends on chiasmata, exchanges of continuity between homologous chromosomes that originate from the repair of programmed double-strand breaks (DSBs) catalyzed by the Spo11 endonuclease. Since DSBs can lead to irreparable damage in germ cells, while chromosomes lacking DSBs also lack chiasmata, the number of DSBs must be carefully regulated to be neither too high nor too low. Here, we show that in Caenorhabditis elegans, meiotic DSB levels are controlled by the phosphoregulation of DSB-1, a homolog of the yeast Spo11 cofactor Rec114, by the opposing activities of PP4PPH-4.1 phosphatase and ATRATL-1 kinase. Increased DSB-1 phosphorylation in pph-4.1 mutants correlates with reduction in DSB formation, while prevention of DSB-1 phosphorylation drastically increases the number of meiotic DSBs both in pph-4.1 mutants and in the wild-type background. C. elegans and its close relatives also possess a diverged paralog of DSB-1, called DSB-2, and loss of dsb-2 is known to reduce DSB formation in oocytes with increasing age. We show that the proportion of the phosphorylated, and thus inactivated, form of DSB-1 increases with age and upon loss of DSB-2, while non-phosphorylatable DSB-1 rescues the age-dependent decrease in DSBs in dsb-2 mutants. These results suggest that DSB-2 evolved in part to compensate for the inactivation of DSB-1 through phosphorylation, to maintain levels of DSBs in older animals. Our work shows that PP4PPH-4.1, ATRATL-1, and DSB-2 act in concert with DSB-1 to promote optimal DSB levels throughout the reproductive lifespan.


Assuntos
Proteínas de Caenorhabditis elegans , Proteínas de Saccharomyces cerevisiae , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Quebras de DNA de Cadeia Dupla , Meiose , Recombinases/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Cell Rep ; 30(10): 3207-3217.e4, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32160530

RESUMO

Changes in epigenetic states affect organismal homeostasis, including stress resistance. However, the mechanisms coordinating epigenetic states and systemic stress resistance remain largely unknown. Here, we identify the intestine-to-germline communication of epigenetic states, which intergenerationally enhances stress resistance in C. elegans. The alterations in epigenetic states by deficiency of the histone H3K4me3 modifier ASH-2 in the intestine or germline increase organismal stress resistance, which is abrogated by knockdown of the H3K4 demethylase RBR-2. Remarkably, the increase in stress resistance induced by ASH-2 deficiency in the intestine is abrogated by RBR-2 knockdown in the germline, suggesting the intestine-to-germline transmission of epigenetic information. This communication from intestine to germline in the parental generation increases stress resistance in the next generation. Moreover, the intertissue communication is mediated partly by transcriptional regulation of F08F1.3. These results reveal that intertissue communication of epigenetic information provides mechanisms for intergenerational regulation of systemic stress resistance.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Epigênese Genética , Células Germinativas/metabolismo , Padrões de Herança/genética , Intestinos/fisiologia , Estresse Fisiológico/genética , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Regulação para Baixo/genética , Estresse Oxidativo
16.
J Cell Biol ; 157(2): 231-42, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11956226

RESUMO

During meiosis, chromosomes undergo large-scale reorganization to allow pairing between homologues, which is necessary for recombination and segregation. In many organisms, pairing of homologous chromosomes is accompanied, and possibly facilitated, by the bouquet, the clustering of telomeres in a small region of the nuclear periphery. Taking advantage of the cytological accessibility of meiosis in maize, we have characterized the organization of centromeres and telomeres throughout meiotic prophase. Our results demonstrate that meiotic centromeres are polarized prior to the bouquet stage, but that this polarization does not contribute to bouquet formation. By examining telocentric and ring chromosomes, we have tested the cis-acting requirements for participation in the bouquet. We find that: (a) the healed ends of broken chromosomes, which contain telomere repeats, can enter the bouquet; (b) ring chromosomes enter the bouquet, indicating that terminal position on a chromosome is not necessary for telomere sequences to localize to the bouquet; and (c) beginning at zygotene, the behavior of telomeres is dominant over any centromere-mediated chromosome behavior. The results of this study indicate that specific chromosome regions are acted upon to determine the organization of meiotic chromosomes, enabling the bouquet to form despite large-scale changes in chromosome architecture.


Assuntos
Polaridade Celular , Pareamento Cromossômico , Cromossomos/metabolismo , Meiose , Telômero/metabolismo , Zea mays/citologia , Núcleo Celular/metabolismo , Centrômero/metabolismo , Cromossomos/genética , Hibridização in Situ Fluorescente , Cromossomos em Anel , Transdução de Sinais , Zea mays/genética
17.
PLoS Genet ; 2(2): e12, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16462941

RESUMO

During meiosis, most organisms ensure that homologous chromosomes undergo at least one exchange of DNA, or crossover, to link chromosomes together and accomplish proper segregation. How each chromosome receives a minimum of one crossover is unknown. During early meiosis in Caenorhabditis elegans and many other species, chromosomes adopt a polarized organization within the nucleus, which normally disappears upon completion of homolog synapsis. Mutations that impair synapsis even between a single pair of chromosomes in C. elegans delay this nuclear reorganization. We quantified this delay by developing a classification scheme for discrete stages of meiosis. Immunofluorescence localization of RAD-51 protein revealed that delayed meiotic cells also contained persistent recombination intermediates. Through genetic analysis, we found that this cytological delay in meiotic progression requires double-strand breaks and the function of the crossover-promoting heteroduplex HIM-14 (Msh4) and MSH-5. Failure of X chromosome synapsis also resulted in impaired crossover control on autosomes, which may result from greater numbers and persistence of recombination intermediates in the delayed nuclei. We conclude that maturation of recombination events on chromosomes promotes meiotic progression, and is coupled to the regulation of crossover number and placement. Our results have broad implications for the interpretation of meiotic mutants, as we have shown that asynapsis of a single chromosome pair can exert global effects on meiotic progression and recombination frequency.


Assuntos
Troca Genética , Meiose , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Núcleo Celular/metabolismo , Mapeamento Cromossômico , Microscopia de Fluorescência , Mutação , Rad51 Recombinase/fisiologia , Recombinação Genética
18.
Biophys J ; 94(12): 4957-70, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18326650

RESUMO

Structured illumination microscopy is a method that can increase the spatial resolution of wide-field fluorescence microscopy beyond its classical limit by using spatially structured illumination light. Here we describe how this method can be applied in three dimensions to double the axial as well as the lateral resolution, with true optical sectioning. A grating is used to generate three mutually coherent light beams, which interfere in the specimen to form an illumination pattern that varies both laterally and axially. The spatially structured excitation intensity causes normally unreachable high-resolution information to become encoded into the observed images through spatial frequency mixing. This new information is computationally extracted and used to generate a three-dimensional reconstruction with twice as high resolution, in all three dimensions, as is possible in a conventional wide-field microscope. The method has been demonstrated on both test objects and biological specimens, and has produced the first light microscopy images of the synaptonemal complex in which the lateral elements are clearly resolved.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Iluminação/métodos , Microscopia de Fluorescência/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Mol Biochem Parasitol ; 160(2): 107-15, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18534695

RESUMO

Malaria parasites utilize a short N-terminal amino acid motif termed the Plasmodium export element (PEXEL) to export an array of proteins to the host erythrocyte during blood stage infection. Using immunoaffinity chromatography and mass spectrometry, insight into this signal-mediated trafficking mechanism was gained by discovering that the PEXEL motif is cleaved and N-acetylated. PfHRPII and PfEMP2 are two soluble proteins exported by Plasmodium falciparum that were demonstrated to undergo PEXEL cleavage and N-acetylation, thus indicating that this N-terminal processing may be general to many exported soluble proteins. It was established that PEXEL processing occurs upstream of the brefeldin A-sensitive trafficking step in the P. falciparum secretory pathway, therefore cleavage and N-acetylation of the PEXEL motif occurs in the endoplasmic reticulum (ER) of the parasite. Furthermore, it was shown that the recognition of the processed N-terminus of exported proteins within the parasitophorous vacuole may be crucial for protein transport to the host erythrocyte. It appears that the PEXEL may be defined as a novel ER peptidase cleavage site and a classical N-acetyltransferase substrate sequence.


Assuntos
Plasmodium/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Animais , Cromatografia de Afinidade , Retículo Endoplasmático/metabolismo , Espectrometria de Massas , Modelos Biológicos , Sinais Direcionadores de Proteínas
20.
Mol Carcinog ; 47(6): 458-65, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18058807

RESUMO

Human studies suggest that excessive energy intake and obesity may influence prostate cancer progression. Rodent experiments demonstrate that diet restriction attenuates tumor growth in parallel with reduced vascular density. The present study examines changes in the insulin-like growth factor I (IGF-I) axis caused by dietary restriction and their association with the expression of vascular endothelial growth factor (VEGF) in prostate cancer. Weanling male Copenhagen rats were randomized into control or 40% dietary restricted groups (n = 5). After 8 wk, rats were implanted with rat AT6.3 prostate adenocarcinoma cells. Two weeks later, the animals were sacrificed and serum, normal prostate, liver, and prostate tumor samples were collected for analyses. Dietary restriction reduced serum concentrations of IGF-I by 35% (P < 0.05) and increased IGF-binding protein-3 (IGFBP3) by sevenfold (P < 0.0001). Lower circulating IGF-I concentrations were correlated with reduced IGF-I mRNA expression in the liver, the primary source of circulating IGF-I. Dietary restriction also lowered mRNA expression of IGF-I (45%, P = 0.0242) and its receptor IGFIR (40%, P = 0.0083) in prostate tumors. Similarly, reduced VEGF mRNA (30%, P = 0.0176) and secreted VEGF protein (33%, P = 0.0003) were observed in prostate cancer of restricted rats. An in vitro study employing AT6.3 prostate cancer cells demonstrated dose- and time-dependent stimulation of VEGF expression by IGF-I. These results suggest that dietary restriction reduces endocrine and prostate tumor autocrine/paracrine IGF-I expression, which contributes to reduced VEGF expression and signaling, to inhibit tumor angiogenesis associated with prostate tumorigenesis.


Assuntos
Adenocarcinoma/metabolismo , Restrição Calórica , Dieta , Fator de Crescimento Insulin-Like I/fisiologia , Neoplasias da Próstata/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/patologia , Animais , Peso Corporal , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Fígado/metabolismo , Masculino , Reação em Cadeia da Polimerase , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Ratos , Ratos Sprague-Dawley , Fator A de Crescimento do Endotélio Vascular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA