Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(37): 22639-22648, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32900936

RESUMO

Despite an abundant literature on gold nanoparticles use for biomedicine, only a few of the gold-based nanodevices are currently tested in clinical trials, and none of them are approved by health agencies. Conversely, ionic gold has been used for decades to treat human rheumatoid arthritis and benefits from 70-y hindsight on medical use. With a view to open up new perspectives in gold nanoparticles research and medical use, we revisit here the literature on therapeutic gold salts. We first summarize the literature on gold salt pharmacokinetics, therapeutic effects, adverse reactions, and the present repurposing of these ancient drugs. Owing to these readings, we evidence the existence of a common metabolism of gold nanoparticles and gold ions and propose to use gold salts as a "shortcut" to assess the long-term effects of gold nanoparticles, such as their fate and toxicity, which remain challenging questions nowadays. Moreover, one of gold salts side effects (i.e., a blue discoloration of the skin exposed to light) leads us to propose a strategy to biosynthesize large gold nanoparticles from gold salts using light irradiation. These hypotheses, which will be further investigated in the near future, open up new avenues in the field of ionic gold and gold nanoparticles-based therapies.


Assuntos
Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Nanomedicina/tendências , Artrite Reumatoide/tratamento farmacológico , Ouro/efeitos adversos , Humanos , Nanopartículas Metálicas/efeitos adversos , Nanomedicina/métodos
2.
Proc Natl Acad Sci U S A ; 117(1): 103-113, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31852822

RESUMO

Gold nanoparticles are used in an expanding spectrum of biomedical applications. However, little is known about their long-term fate in the organism as it is generally admitted that the inertness of gold nanoparticles prevents their biodegradation. In this work, the biotransformations of gold nanoparticles captured by primary fibroblasts were monitored during up to 6 mo. The combination of electron microscopy imaging and transcriptomics study reveals an unexpected 2-step process of biotransformation. First, there is the degradation of gold nanoparticles, with faster disappearance of the smallest size. This degradation is mediated by NADPH oxidase that produces highly oxidizing reactive oxygen species in the lysosome combined with a cell-protective expression of the nuclear factor, erythroid 2. Second, a gold recrystallization process generates biomineralized nanostructures consisting of 2.5-nm crystalline particles self-assembled into nanoleaves. Metallothioneins are strongly suspected to participate in buildings blocks biomineralization that self-assembles in a process that could be affected by a chelating agent. These degradation products are similar to aurosomes structures revealed 50 y ago in vivo after gold salt therapy. Overall, we bring to light steps in the lifecycle of gold nanoparticles in which cellular pathways are partially shared with ionic gold, revealing a common gold metabolism.


Assuntos
Biodegradação Ambiental , Biomineralização/fisiologia , Citoplasma/metabolismo , Ouro/química , Ouro/metabolismo , Nanopartículas Metálicas/química , Biomineralização/genética , Biotransformação/genética , Biotransformação/fisiologia , Linhagem Celular , Fibroblastos , Expressão Gênica , Ouro/farmacologia , Humanos , Imageamento Tridimensional , Inativação Metabólica , Lisossomos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Tamanho da Partícula , Espécies Reativas de Oxigênio , Pele , Transcriptoma
3.
Angew Chem Int Ed Engl ; 61(20): e202200166, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35244321

RESUMO

Driven by the development of new functional inks, inkjet-printed electronics has achieved several milestones upon moving from the integration of simple electronic elements (e.g., temperature and pressure sensors, RFID antennas, etc.) to high-tech applications (e.g. in optoelectronics, energy storage and harvesting, medical diagnosis). Currently, inkjet printing techniques are limited by spatial resolution higher than several micrometers, which sets a redhibitorythreshold for miniaturization and for many applications that require the controlled organization of constituents at the nanometer scale. In this Review, we present the physico-chemical concepts and the equipment constraints underpinning the resolution limit of inkjet printing and describe the contributions from molecular, supramolecular, and nanomaterials-based approaches for their circumvention. Based on these considerations, we propose future trajectories for improving inkjet-printing resolution that will be driven and supported by breakthroughs coming from chemistry. Please check all text carefully as extensive language polishing was necessary. Title ok? Yes.


Assuntos
Eletrônica , Nanoestruturas , Eletrônica/métodos
4.
Soft Matter ; 17(48): 10910-10917, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34811558

RESUMO

It has long been known that the mechanical strength of finely grained solid state polycrystals could be enhanced when the grain size is reduced. Indeed, the equation linking the yield stress and the inverse square root of grain size was introduced in the 1950s by Hall and Petch. Since then this relationship has been widely used to engineer structural metals and alloys. To date, no similar behavior has been reported in materials other than atomic systems where the grain size usually lies in the nanometric range. The purpose of the present work is to study the influence of grain size on the mechanical strength enhancement of a soft colloidal 'alloy' made of micellar polycrystalline grains and silica nanoparticles. The nanoparticles act as nucleation sites and their concentration promotes the variation of the polycrystalline grain size. This system bears resemblance to solid state polycrystals; however the achieved grain length scale is situated in the micrometric domain. We show that the grain size evolves non-monotonically, first decreasing then increasing, when the nanoparticle concentration increases. Our main result is that the yield stress rigorously obeys the Hall-Petch law and follows a linear variation as a function of the inverse square root of the grain diameter. We believe that our experimental approach offers new possibilities to study the poorly understood mechanical aspects of polycrystalline and nanocrystalline structures, such as their plasticity, using non-destructive techniques.

5.
Langmuir ; 36(27): 7925-7932, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32539413

RESUMO

Mixing negatively charged polyelectrolyte (PEL) with positively charged gold nanoparticles (Au NPs) in aqueous solution results in electrostatics complexes of different shapes and compactness. Here, when complexing with a semirigid PEL hyaluronic acid (HA), we obtain crystals made of nanoparticles in a new region of the phase diagram, as evidenced by small-angle X-ray scattering (SAXS). The Au NPs were initially well dispersed in solution; their size distribution is well controlled but does not need to be extremely narrow. The bacterial hyaluronic acid, polydispersed, is commercially available. Such rather simple materials and mixing preparation produce a highly ordered crystalline phase of electrostatic complexes. The details of the interactions between spherical nanoparticles and linear polymer chains remain to be investigated. In practice, it opens a completely new and unexpected method of complexation. It has high potential, in particular because one can take advantage of the versatility of Au NPs associated with the specificity of biopolymers, varied due to natural biodiversity.

6.
Small ; 13(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28060465

RESUMO

Proteins implicated in iron homeostasis are assumed to be also involved in the cellular processing of iron oxide nanoparticles. In this work, the role of an endogenous iron storage protein-namely the ferritin-is examined in the remediation and biodegradation of magnetic iron oxide nanoparticles. Previous in vivo studies suggest the intracellular transfer of the iron ions released during the degradation of nanoparticles to endogenous protein cages within lysosomal compartments. Here, the capacity of ferritin cages to accommodate and store the degradation products of nanoparticles is investigated in vitro in the physiological acidic environment of the lysosomes. Moreover, it is questioned whether ferritin proteins can play an active role in the degradation of the nanoparticles. The magnetic, colloidal, and structural follow-up of iron oxide nanoparticles and proteins in lysosome-like medium confirms the efficient remediation of potentially harmful iron ions generated by nanoparticles within ferritins. The presence of ferritins, however, delays the degradation of particles due to a complex colloidal behavior of the mixture in acidic medium. This study exemplifies the important implications of intracellular proteins in processes of degradation and metabolization of iron oxide nanoparticles.


Assuntos
Compostos Férricos/química , Ferritinas/metabolismo , Nanopartículas/química , Ácidos/química , Animais , Apoferritinas/metabolismo , Cavalos , Concentração de Íons de Hidrogênio , Cinética , Lisossomos/metabolismo , Fenômenos Magnéticos , Metais/química , Nanopartículas/ultraestrutura , Espalhamento a Baixo Ângulo , Fatores de Tempo , Difração de Raios X
7.
Langmuir ; 31(21): 5731-7, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25851431

RESUMO

We study for the first time the structure of stable finite size clusters (i.e., colloidal molecules) obtained by self-assembly of cationic gold nanoparticles (i.e., atoms) mediated by a flexible polyanion. We reveal with nondenaturizing techniques a striking structural transition from 1D small chains of 12 gold nanoparticles (AuNPs) with a self-avoiding conformation to 3D fractal clusters of 130 AuNPs with short-range ordering around the charge inversion threshold. Interestingly, these well-defined structures are obtained by simple mixing in water without anisotropic functionalization or external forces. As a preliminary step, we introduce a new synthesis pathway leading to well-defined cationic AuNPs of controllable size that can be dispersed in H2O or D2O without aggregation and ligands' self-assemblies. On this occasion, we point for the first time that usual procedures do not enable to eliminate cationic ligands' self-assemblies that could play an undesired role in AuNPs' self-assembly through electrostatic interactions.

8.
Nanoscale ; 16(25): 12037-12049, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38809107

RESUMO

A better understanding of the molecular and cellular events involved in the inflammation process has opened novel perspectives in the treatment of inflammatory diseases, particularly through the development of well-designed nanomedicines. Here we describe the design of a novel class of anti-inflammatory nanomedicine (denoted as Au@MIL) synthesized through a one-pot, cost-effective and green approach by coupling a benchmark mesoporous iron(III) carboxylate metal organic framework (MOF) (i.e. MIL-100(Fe)) and glutathionate protected gold nanoclusters (i.e. Au25SG18 NCs). This nano-carrier exhibits low toxicity and excellent colloidal stability combined with the high loading capacity of the glucocorticoid dexamethasone phosphate (DexP) whose pH-dependent delivery was observed. The drug loaded Au@MIL nanocarrier shows high anti-inflammatory activity due to its capacity to specifically hinder inflammatory cell growth, scavenge intracellular reactive oxygen species (ROS) and downregulate pro-inflammatory cytokine secretion. In addition, this formulation has the capacity to inhibit the Toll-like receptor (TLR) signaling cascade namely the nuclear factor kappa B (NF-κB) and the interferon regulatory factor (IRF) pathways. This not only provides a new avenue for the nanotherapy of inflammatory diseases but also enhances our fundamental knowledge of the role of nanoMOF based nanomedicine in the regulation of innate immune signaling.


Assuntos
Anti-Inflamatórios , Dexametasona , Ouro , Inflamação , Nanopartículas Metálicas , Estruturas Metalorgânicas , Transdução de Sinais , Receptores Toll-Like , Ouro/química , Camundongos , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Animais , Receptores Toll-Like/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Inflamação/tratamento farmacológico , Dexametasona/química , Dexametasona/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células RAW 264.7 , Portadores de Fármacos/química , Humanos , NF-kappa B/metabolismo
9.
J Colloid Interface Sci ; 630(Pt A): 355-364, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36257137

RESUMO

Aggregates of charged metal particles obtained by electrostatic coupling with a compound of opposite charge in the vicinity of the net zero charge ratio are of interest in the field of plasmonics because the inter-particle distance is minimal, which favours plasmonic coupling. However, these structures present a low colloidal stability limiting the development of applications. In this article we show that globally neutral aggregates formed by electrostatic complexation of citrate-stabilized gold particles and a quaternized chitosan (i.e., polycation) around the net zero charge ratio could be stabilized at a nanometric size by the subsequent addition of polyelectrolyte chains. Furthermore, the sign of the charge carried by the stabilizing chains determines the sign of the global charge carried by the stabilized complexes. The stabilization is demonstrated in saline environment on a broad pH range as well as in a cell culture media over periods of several days. Contrarily to stabilization by charged particles, our stabilized complexes are found to retain their initial characteristics (i.e. shape, size, internal structure and optical properties) after stabilization. Hence, the plasmonic coupling allows to maximize the optical absorption around the 800 nm wavelength at which the lasers used for thermoplasmonic and surface enhanced Raman scattering analysis operate.


Assuntos
Quitosana , Nanopartículas Metálicas , Polieletrólitos , Ouro , Tamanho da Partícula , Quitosana/química , Íons
10.
Talanta ; 251: 123752, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35926414

RESUMO

Surface enhanced Raman scattering (SERS) has become widely used for identification, quantification and providing structural information about molecular structure in low concentrations as it allows signal Raman enhancement using metallic nanoparticles (NPs). Controlling interaction between analyte and NPs is a major point for the optimization of signal exaltation in SERS analysis. The objective of this study is the improvement and the control of SERS analysis by aggregation/self-assembly optimization of AuNPs using quaternized chitosan. The interest of this approach is to allow stable and reliable measurements with a simple and low cost approach compatible with a massive use in the field. In this work, we used design of experiments by Box-Behnken design to fix optimized conditions to increase signal sensibility of epinephrine water solutions. We also tested SERS signal stability in isotonic sodium chloride 0.9% and glucose 5% matrices. Our results demonstrate that globally neutral AuNPs aggregates were stabilized at a nanometric size by the subsequent addition of polyelectrolyte chains and allows for significant Raman signal enhancement of epinephrine. We succeed to prepare the SERS active material and measure a stable signal of epinephrine at a concentration as down as 0.1 µg mL-1 in less than 5 min. The signal remained stable and exploitable for at least 2 h. Our results reveal a strong correlation between intensity and logarithm of the concentration (concentration before dilution from 0.1 to 10 µg mL-1) suggesting a possible quantification. Furthermore, the signal of epinephrine at 10 µg mL-1 were also exploitable and stable in complex media as isotonic sodium chloride 0.9% and glucose 5%. This represents a particularly interesting application that would allow direct analysis of drugs complex media and open the way to analysis in biological samples.


Assuntos
Quitosana , Nanopartículas Metálicas , Epinefrina , Glucose , Ouro/química , Nanopartículas Metálicas/química , Polieletrólitos , Cloreto de Sódio , Análise Espectral Raman/métodos , Água
11.
J Mater Chem B ; 11(14): 3195-3211, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951043

RESUMO

Among a plethora of drug nanocarriers, biocompatible nanoscale metal-organic frameworks (nanoMOFs) with a large surface area and an amphiphilic internal microenvironment have emerged as promising drug delivery platforms, mainly for cancer therapy. However, their application in biomedicine still suffers from shortcomings such as a limited chemical and/or colloidal stability and/or toxicity. Here, we report the design of a hierarchically porous nano-object (denoted as USPIO@MIL) combining a benchmark nanoMOF (that is, MIL-100(Fe)) and ultra-small superparamagnetic iron oxide (USPIO) nanoparticles (that is, maghemite) that is synthesized through a one-pot, cost-effective and environmentally friendly protocol. The synergistic coupling of the physico-chemical and functional properties of both nanoparticles confers to these nano-objects valuable features such as high colloidal stability, high biodegradability, low toxicity, high drug loading capacity as well as stimuli-responsive drug release and superparamagnetic properties. This bimodal MIL-100(Fe)/maghemite nanocarrier once loaded with anti-tumoral and anti-inflammatory drugs (doxorubicin and methotrexate) shows high anti-inflammatory and anti-tumoral activities. In addition, the USPIO@MIL nano-object exhibits excellent relaxometric properties and its applicability as an efficient contrast agent for magnetic resonance imaging is herein demonstrated. This highlights the high potential of the maghemite@MOF composite integrating the functions of imaging and therapy as a theranostic anti-inflammatory formulation.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Nanomedicina , Anti-Inflamatórios/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro
12.
Biomacromolecules ; 13(3): 751-9, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22304685

RESUMO

Interactions of plant tannins with polysaccharide hyaluronan are studied by means of light scattering and small-angle X-ray scattering (SAXS). In this paper, we show that (1) the tannin-polysaccharide complexes remain stable in colloidal suspension; (2) the masses and structures of colloidal tannin-polysaccharide objects depend on the tannin degree of polymerization; and (3) the densities of tannin-polysaccharide aggregates are about 7 times lower than the density of a single solvated polysaccharide molecule. Short tannins and polysaccharides are aggregated in loose oligomeric structures whose sizes are comparable to a single polysaccharide molecule. Tannins longer than 10 nm and polysaccharides are aggregated in larger microgel-like particles whose sizes exceed 200 nm.


Assuntos
Coloides/química , Coloides/metabolismo , Ácido Hialurônico/química , Ácido Hialurônico/metabolismo , Proantocianidinas/química , Proantocianidinas/metabolismo , Água/química , Polimerização , Espalhamento a Baixo Ângulo
13.
Pharmaceutics ; 14(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36297669

RESUMO

Nanomedicines based on inorganic nanoparticles have grown in the last decades due to the nanosystems' versatility in the coating, tuneability, and physical and chemical properties. Nonetheless, concerns have been raised regarding the immunotropic profile of nanoparticles and how metallic nanoparticles affect the immune system. Cationic polymer nanoparticles are widely used for cell transfection and proved to exert an adjuvant immunomodulatory effect that improves the efficiency of conventional vaccines against infection or cancer. Likewise, gold nanoparticles (AuNPs) also exhibit diverse effects on immune response depending on size or coatings. Photothermal or photodynamic therapy, radiosensitization, and drug or gene delivery systems take advantage of the unique properties of AuNPs to deeply modify the tumoral ecosystem. However, the collective effects that AuNPs combined with cationic polymers might exert on their own in the tumor immunological microenvironment remain elusive. The purpose of this study was to analyze the triple-negative breast tumor immunological microenvironment upon intratumoral injection of polyethyleneimine (PEI)-AuNP nanocomposites (named AuPEI) and elucidate how it might affect future immunotherapeutic approaches based on this nanosystem. AuPEI nanocomposites were synthesized through a one-pot synthesis method with PEI as both a reducing and capping agent, resulting in fractal assemblies of about 10 nm AuNPs. AuPEI induced an inflammatory profile in vitro in the mouse macrophage-like cells RAW264.7 as determined by the secretion of TNF-α and CCL5 while the immunosuppressor IL-10 was not increased. However, in vivo in the mouse breast MET-1 tumor model, AuPEI nanocomposites shifted the immunological tumor microenvironment toward an M2 phenotype with an immunosuppressive profile as determined by the infiltration of PD-1-positive lymphocytes. This dichotomy in AuPEI nanocomposites in vitro and in vivo might be attributed to the highly complex tumor microenvironment and highlights the importance of testing the immunogenicity of nanomaterials in vitro and more importantly in vivo in relevant immunocompetent mouse tumor models to better elucidate any adverse or unexpected effect.

14.
ACS Appl Mater Interfaces ; 14(49): 54439-54457, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36468426

RESUMO

Smart microgels (µGels) made of polymeric particles doped with inorganic nanoparticles have emerged recently as promising multifunctional materials for nanomedicine applications. However, the synthesis of these hybrid materials is still a challenging task with the necessity to control several features, such as particle sizes and doping levels, in order to tailor their final properties in relation to the targeted application. We report herein an innovative modular strategy to achieve the rational design of well-defined and densely filled hybrid particles. It is based on the assembly of the different building blocks, i.e., µGels, dyes, and small gold nanoparticles (<4 nm), and the tuning of nanoparticle loading within the polymer matrix through successive incubation steps. The characterization of the final hybrid networks using UV-vis absorption, fluorescence, transmission electron microscopy, dynamic light scattering, and small-angle X-ray scattering revealed that they uniquely combine the properties of hydrogel particles, including high loading capacity and stimuli-responsive behavior, the photoluminescent properties of dyes (rhodamine 6G, methylene blue and cyanine 7.5), and the features of gold nanoparticle assembly. Interestingly, in response to pH and temperature stimuli, the smart hybrid µGels can shrink, leading to the aggregation of the gold nanoparticles trapped inside the polymer matrix. This stimuli-responsive behavior results in plasmon band broadening and red shift toward the near-infrared region (NIR), opening promising prospects in biomedical science. Particularly, the potential of these smart hybrid nanoplatforms for photoactivated hyperthermia, photoacoustic imaging, cellular internalization, intracellular imaging, and photothermal therapy was assessed, demonstrating well controlled multimodal opportunities for theranostics.


Assuntos
Hipertermia Induzida , Nanopartículas Metálicas , Microgéis , Nanopartículas , Técnicas Fotoacústicas , Ouro/química , Corantes Fluorescentes/química , Terapia Fototérmica , Técnicas Fotoacústicas/métodos , Nanopartículas Metálicas/química , Hipertermia Induzida/métodos , Nanopartículas/química , Polímeros/química , Microscopia Eletrônica de Transmissão , Concentração de Íons de Hidrogênio , Fototerapia , Linhagem Celular Tumoral
15.
ACS Nano ; 15(2): 3330-3348, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33528985

RESUMO

Peritoneal metastasis (PM) is considered as the terminal stage of metastatic colon cancer, with still poor median survival rate even with the best recent chemotherapy treatment. The current PM treatment combines cytoreductive surgery, which consists of resecting all macroscopic tumors, with hyperthermic intraperitoneal chemotherapy (HIPEC), which uses mild hyperthermia to boost the diffusion and cytotoxic effect of chemotherapeutic drugs. As HIPEC is performed via a closed circulation of a hot liquid containing chemotherapy, it induces uncontrolled heating and drug distribution in the whole peritoneal cavity with important off-site toxicity and a high level of morbidity. Here, we propose a safer precision strategy using near-infrared (NIR) photoactivated gold nanoparticles (AuNPs) coupled to the chemotherapeutic drug 5-fluorouracil (5-FU) to enable a spatial and temporal control of mild chemo-hyperthermia targeted to the tumor nodules within the peritoneal cavity. Both the 16 nm AuNPs and the corresponding complex with 5-FU (AuNP-5-FU) were shown as efficient NIR photothermal agents in the microenvironment of subcutaneous colon tumors as well as PM in syngeneic mice. Noteworthy, NIR photothermia provided additional antitumor effects to 5-FU treatment. A single intraperitoneal administration of AuNP-5-FU resulted in their preferential accumulation in tumor nodules and peritoneal macrophages, allowing light-induced selective hyperthermia, extended tumor necrosis, and activation of a pro-inflammatory immune response while leaving healthy tissues without any damage. From a translational standpoint, the combined and tumor-targeted photothermal and chemotherapy mediated by the AuNP-drug complex has the potential to overcome the current off-target toxicity of HIPEC in clinical practice.


Assuntos
Neoplasias do Colo , Hipertermia Induzida , Nanopartículas Metálicas , Neoplasias Peritoneais , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias do Colo/tratamento farmacológico , Terapia Combinada , Fluoruracila/uso terapêutico , Ouro/uso terapêutico , Hipertermia , Camundongos , Neoplasias Peritoneais/tratamento farmacológico , Microambiente Tumoral
16.
Nanoscale ; 12(42): 21832-21849, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33104150

RESUMO

Cellular endocytosis and intracellular trafficking of nanoparticles induce dynamic rearrangements that profoundly modify the physical properties of nanoparticle and govern their biological outcomes when activated by external fields. The precise structure, organization, distribution, and density of gold nanoparticles (AuNPs) confined within intracellular compartments such as lysosomes have not been studied comprehensively, hampering the derivation of predictive models of their therapeutic activity within the cells of interest. By using transmission electron microscopy and small-angle X-ray scattering, we have determined that canonical spherical citrate-coated AuNPs in the 3-30 nm size range form fractal clusters in endolysosomes of macrophages, endothelial cells, and colon cancer cells. Statistical analysis revealed that the cluster size and endolysosome size are correlated but do not depend on the size of AuNPs unless larger preformed aggregates of AuNPs are internalized. Smaller AuNPs are confined in greater numbers in loose aggregates covering a higher fraction of the endolysosomes compared to the largest AuNPs. The fractal dimensions of intracellular clusters increased with the particle size, regardless of the cell type. We thus analyzed how these intracellular structure parameters of AuNPs affect their optical absorption and photothermal properties. We observed that a 2nd plasmon resonance band was shifted to the near-infrared region when the nanoparticle size and fractal dimensions of the intracellular cluster increased. This phenomenon of intracellular plasmon coupling is not directly correlated to the size of the intralysosomal cluster or the number of AuNPs per cluster but rather to the compacity of the cluster and the size of the individual AuNPs. The intracellular plasmon-coupling phenomenon translates to an efficient heating efficiency with the excitation of the three cell types at 808 nm, transforming the NIR-transparent canonical AuNPs with sizes below 30 nm into NIR-absorbing clusters in the tumor microenvironment. Harnessing the spontaneous clustering of spherical AuNPs by cells might be a more valuable strategy for theranostic purposes than deploying complex engineering to derive NIR-absorbent nanostructures out of their environment. Our paper sheds light on AuNP intracellular reorganization and proposes a general method to link their intracellular fates to their in situ physical properties exploited in medical applications.


Assuntos
Ouro , Nanopartículas Metálicas , Endocitose , Células Endoteliais , Fractais , Tamanho da Partícula
17.
Nanoscale ; 11(7): 3344-3359, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30724952

RESUMO

Gold nanoparticles have been thoroughly used in designing thermal ablative therapies and in photoacoustic imaging in cancer treatment owing to their unique and tunable plasmonic properties. While the plasmonic properties highly depend on the size and structure, controllable aggregation of gold nanoparticles can trigger a plasmonic coupling of adjacent electronic clouds, henceforth leading to an increase of light absorption within the near-infrared (NIR) window. Polymer-engraftment of gold nanoparticles has been investigated to achieve the plasmonic coupling phenomenon, but complex chemical steps are often needed to accomplish a biomedically relevant product. An appealing and controllable manner of achieving polymer-based plasmon coupling is a template-assisted Au+3 reduction that ensures in situ gold reduction and coalescence. Among the polymers exploited as reducing agents are polyethyleneimines (PEI). In this study, we addressed the PEI-assisted synthesis of gold nanoparticles and their further aggregation to obtain fractal NIR-absorbent plasmonic nanoaggregates for photothermal therapy and photoacoustic imaging of colorectal cancer. PEI-assisted Au+3 reduction was followed up by UV-visible light absorption, small-angle X-ray scattering (SAXS), and photo-thermal conversion. The reaction kinetics, stability, and the photothermal plasmonic properties of the as-synthesized nanocomposites tightly depended on the PEI : Au ratio. We defined a PEI-Au ratio range (2.5-5) for the one-pot synthesis of gold nanoparticles that self-arrange into fractal nanoaggregates with demonstrated photo-thermal therapeutic and imaging efficiency both in vitro and in vivo in a colorectal carcinoma (CRC) animal model.


Assuntos
Neoplasias Colorretais/terapia , Ouro , Hipertermia Induzida , Nanocompostos , Fototerapia , Polietilenoimina , Nanomedicina Teranóstica , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ouro/química , Ouro/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Nanocompostos/química , Nanocompostos/uso terapêutico , Polietilenoimina/química , Polietilenoimina/farmacologia
18.
J Phys Chem B ; 112(40): 12596-605, 2008 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-18795771

RESUMO

The influence of polyoxovanadate clusters ([H(2)V(10)O(28)](4-)) on the thermo-reversible gelation of porcine skin gelatin solution (type A, M w approximately 40 000 g.mol (-1), pH = 3.4 << isoelectric point (IEP) approximately 8) has been investigated as a function of temperature and vanadate concentration by combining rheology and microcalorimetry. This work shows that the rheological properties of the system depend on electrostatic interactions between [H(2)V(10)O(28)](4-) and positively charged gelatin chains. In a first stage, we describe the renaturation of the gelatin triple helices in the presence of decavanadate clusters. We reveal that, when gelatin chains are in coil conformation (30 degrees C < T < 50 degrees C), the inorganic clusters act as physical cross-linkers that govern the visco-elastic properties of the mixture with an exponential dependence of the (G', G'') modulus with the vanadate concentration. Below 30 degrees C, we show that gelatin triple helix nucleation is slightly favored by the presence of vanadate, but above a helix concentration of 0.012 g.cm (-3), G' is fully governed by the helix concentration. During the melting process, we reveal the non-fully reversible behavior of the vanadate/gelatin rheological properties and the stabilization of gelatin triple helices due to vanadate species until 50 degrees C. This non-reversible character has also been observed in the same experimental conditions with collagen/vanadate solutions. This is the first time that such a stabilization of triple helices has been reported in the case of gelatin hydrogels chemically cross-linked or not. We propose to analyze these results by considering that triple helix aggregates should persist because of decavanadate bridging, that the nucleation of an extended triple helix network may induce a strong modification of the vanadate cross-linker distribution in the system, or both, thus promoting the formation of thermally stable vanadate/gelatin micro-gels in the dangling end of the triple helices.


Assuntos
Gelatina/química , Animais , Colágeno/química , Transição de Fase , Desnaturação Proteica , Reologia , Suínos , Vanadatos/química
19.
Soft Matter ; 4(4): 735-738, 2008 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32907176

RESUMO

The first example of complex coacervation between a biopolymer and polyoxometalate clusters is identified in the gelatin-decavanadate system.

20.
J Phys Chem B ; 122(22): 6055-6063, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29624401

RESUMO

Cyclodextrins (CDs) are a family of oligosaccharides with a toroid shape, which exhibit a remarkable ability to include guest molecules in their internal cavity, providing a hydrophobic environment for poorly soluble molecules. Recently, new types of inclusions of α CDs with alkyl grafted polysaccharide chains (pullulan, chitosan, dextran, amylopectin, chondroitin sulfate...) have been prepared which are autoassembled into micro- and nanoplatelets. We report in this paper an extensive investigation of platelets with different compositions, including their reversible hydration (thermogravimetric analysis), crystalline structure (powder X-ray diffraction), dimensions and shapes (scanning electron microscopy-field emission gun), thermal properties, solubility, and melting (micro-differential scanning calorimetry). The crystalline platelets exhibit layered structures intercalating the polysaccharide backbones and CD complexes hosting the grafted alkyl chains. The monoclinic symmetry of columnar-type crystals suggests a head-to-tail arrangement of the CDs. The platelets have a preferentially hexagonal shape with sharp edges, variable sizes, and thicknesses and sometimes show incomplete layers (terraces). The crystal parameters change upon dehydration. Melting temperatures of platelets in aqueous solutions exceed 100 °C. Finally, we discuss the potential relation between the platelet structure and applications for mucoadhesive devices.


Assuntos
Plaquetas/química , Polissacarídeos/química , alfa-Ciclodextrinas/química , Cristalografia por Raios X , Humanos , Microscopia Eletrônica de Varredura , Solubilidade , Termogravimetria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA