Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Bacteriol ; 198(18): 2536-48, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27432830

RESUMO

UNLABELLED: Helicobacter pylori must be able to rapidly respond to fluctuating conditions within the stomach. Despite this need for constant adaptation, H. pylori encodes few regulatory proteins. Of the identified regulators, the ferric uptake regulator (Fur), the nickel response regulator (NikR), and the two-component acid response system (ArsRS) are each paramount to the success of this pathogen. While numerous studies have individually examined these regulatory proteins, little is known about their combined effect. Therefore, we constructed a series of isogenic mutant strains that contained all possible single, double, and triple regulatory mutations in Fur, NikR, and ArsS. A growth curve analysis revealed minor variation in growth kinetics across the strains; these were most pronounced in the triple mutant and in strains lacking ArsS. Visual analysis showed that strains lacking ArsS formed large aggregates and a biofilm-like matrix at the air-liquid interface. Biofilm quantification using crystal violet assays and visualization via scanning electron microscopy (SEM) showed that all strains lacking ArsS or containing a nonphosphorylatable form of ArsR (ArsR-D52N mutant) formed significantly more biofilm than the wild-type strain. Molecular characterization of biofilm formation showed that strains containing mutations in the ArsRS pathway displayed increased levels of cell aggregation and adherence, both of which are key to biofilm development. Furthermore, SEM analysis revealed prevalent coccoid cells and extracellular matrix formation in the ArsR-D52N, ΔnikR ΔarsS, and Δfur ΔnikR ΔarsS mutant strains, suggesting that these strains may have an exacerbated stress response that further contributes to biofilm formation. Thus, H. pylori ArsRS has a previously unrecognized role in biofilm formation. IMPORTANCE: Despite a paucity of regulatory proteins, adaptation is key to the survival of H. pylori within the stomach. While prior studies have focused on individual regulatory proteins, such as Fur, NikR, and ArsRS, few studies have examined the combined effect of these factors. Analysis of isogenic mutant strains that contained all possible single, double, and triple regulatory mutations in Fur, NikR, and ArsS revealed a previously unrecognized role for the acid-responsive two-component system ArsRS in biofilm formation.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Helicobacter pylori/fisiologia , Transativadores/metabolismo , Proteínas de Bactérias/genética , Helicobacter pylori/genética , Helicobacter pylori/ultraestrutura , Transativadores/genética
2.
Int J Med Microbiol ; 305(3): 392-403, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25804332

RESUMO

Helicobacter pylori from different individuals exhibits substantial genetic diversity. However, the kinetics of bacterial diversification after infection with a single strain is poorly understood. We investigated evolution of H. pylori following long-term infection in the primate stomach; Rhesus macaques were infected with H. pylori strain USU101 and then followed for 10 years. H. pylori was regularly cultured from biopsies, and single colony isolates were analyzed. At 1-year, DNA fingerprinting showed that all output isolates were identical to the input strain; however, at 5-years, different H. pylori fingerprints were observed. Microarray-based comparative genomic hybridization revealed that long term persistence of USU101 in the macaque stomach was associated with specific whole gene changes. Further detailed investigation showed that levels of the BabA protein were dramatically reduced within weeks of infection. The molecular mechanisms behind this reduction were shown to include phase variation and gene loss via intragenomic rearrangement, suggesting strong selective pressure against BabA expression in the macaque model. Notably, although there is apparently strong selective pressure against babA, babA is required for establishment of infection in this model as a strain in which babA was deleted was unable to colonize experimentally infected macaques.


Assuntos
Variação Genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Adesinas Bacterianas/genética , Animais , Biópsia , Hibridização Genômica Comparativa , Impressões Digitais de DNA , DNA Bacteriano/genética , Modelos Animais de Doenças , Rearranjo Gênico , Estudos Longitudinais , Macaca mulatta , Análise em Microsséries , Seleção Genética , Estômago/microbiologia
3.
J Bacteriol ; 195(24): 5526-39, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24097951

RESUMO

In Helicobacter pylori, the ferric uptake regulator (Fur) has evolved additional regulatory functions not seen in other bacteria; it can repress and activate different groups of genes in both its iron-bound and apo forms. Because little is understood about the process of apo-Fur repression and because only two apo-Fur-repressed genes (pfr and sodB) have previously been identified, we sought to expand our understanding of this type of regulation. Utilizing published genomic studies, we selected three potential new apo-Fur-regulated gene targets: serB, hydA, and the cytochrome c553 gene. Transcriptional analyses confirmed Fur-dependent repression of these genes in the absence of iron, as well as derepression in the absence of Fur. Binding studies showed that apo-Fur directly interacted with the suspected hydA and cytochrome c553 promoters but not that of serB, which was subsequently shown to be cotranscribed with pfr; apo-Fur-dependent regulation occurred at the pfr promoter. Alignments of apo-regulated promoter regions revealed a conserved, 6-bp consensus sequence (AAATGA). DNase I footprinting showed that this sequence lies within the protected regions of the pfr and hydA promoters. Moreover, mutation of the sequence in the pfr promoter abrogated Fur binding and DNase protection. Likewise, fluorescence anisotropy studies and binding studies with mutated consensus sequences showed that the sequence was important for apo-Fur binding to the pfr promoter. Together these studies expand the known apo-Fur regulon in H. pylori and characterize the first reported apo-Fur box sequence.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Sítios de Ligação , Pegada de DNA , Análise Mutacional de DNA , Regulação para Baixo , Regiões Promotoras Genéticas , Ligação Proteica
4.
Mol Microbiol ; 84(5): 921-41, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22507395

RESUMO

In Helicobacter pylori, iron balance is controlled by the Ferric uptake regulator (Fur), an iron-sensing repressor protein that typically regulates expression of genes implicated in iron transport and storage. Herein, we carried out extensive analysis of Fur-regulated promoters and identified a 7-1-7 motif with dyad symmetry (5'-TAATAATnATTATTA-3'), which functions as the Fur box core sequence of H. pylori. Addition of this sequence to the promoter region of a typically non-Fur regulated gene was sufficient to impose Fur-dependent regulation in vivo. Moreover, mutation of this sequence within Fur-controlled promoters negated regulation. Analysis of the H. pylori chromosome for the occurrence of the Fur box established the existence of well-conserved Fur boxes in the promoters of numerous known Fur-regulated genes, and revealed novel putative Fur targets. Transcriptional analysis of the new candidate genes demonstrated Fur-dependent repression of HPG27_51, HPG27_52, HPG27_199, HPG27_445, HPG27_825 and HPG27_1063, as well as Fur-mediated activation of the cytotoxin associated gene A, cagA (HPG27_507). Furthermore, electrophoretic mobility shift assays confirmed specific binding of Fur to the promoters of each of these genes. Future experiments will determine whether loss of Fur regulation of any of these particular genes contributes to the defects in colonization exhibited by the H. pylori fur mutant.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Ferro/metabolismo , Regiões Promotoras Genéticas , Sítios de Ligação , DNA Bacteriano/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Ligação Proteica
5.
J Bacteriol ; 194(23): 6490-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23002221

RESUMO

Helicobacter pylori is a highly successful pathogen that colonizes the gastric mucosa of ∼50% of the world's population. Within this colonization niche, the bacteria encounter large fluctuations in nutrient availability. As such, it is critical that this organism regulate expression of key metabolic enzymes so that they are present when environmental conditions are optimal for growth. One such enzyme is the 2-oxoglutarate (α-ketoglutarate) oxidoreductase (OOR), which catalyzes the conversion of α-ketoglutarate to succinyl coenzyme A (succinyl-CoA) and CO(2). Previous studies from our group suggested that the genes that encode the OOR are activated by iron-bound Fur (Fe-Fur); microarray analysis showed that expression of oorD, oorA, and oorC was altered in a fur mutant strain of H. pylori. The goal of the present work was to more thoroughly characterize expression of the oorDABC genes in H. pylori as well as to define the role of Fe-Fur in this process. Here we show that these four genes are cotranscribed as an operon and that expression of the operon is decreased in a fur mutant strain. Transcriptional start site mapping and promoter analysis revealed the presence of a canonical extended -10 element but a poorly conserved -35 element upstream of the +1. Additionally, we identified a conserved Fur binding sequence ∼130 bp upstream of the transcriptional start site. Transcriptional analysis using promoter fusions revealed that this binding sequence was required for Fe-Fur-mediated activation. Finally, fluorescence anisotropy assays indicate that Fe-Fur specifically bound this Fur box with a relatively high affinity (dissociation constant [K(d)] = 200 nM). These findings provide novel insight into the genetic regulation of a key metabolic enzyme and add to our understanding of the diverse roles Fur plays in gene regulation in H. pylori.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Helicobacter pylori/enzimologia , Helicobacter pylori/genética , Ácidos Cetoglutáricos/metabolismo , Cetona Oxirredutases/biossíntese , Proteínas Repressoras/metabolismo , Acil Coenzima A/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Dióxido de Carbono/metabolismo , Deleção de Genes , Helicobacter pylori/metabolismo , Cetona Oxirredutases/genética , Óperon , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica
6.
Antimicrob Agents Chemother ; 56(1): 378-90, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22064541

RESUMO

Helicobacter pylori has developed antimicrobial resistance to virtually all current antibiotics. Thus, there is a pressing need to develop new anti-H. pylori therapies. We recently described a novel oligo-acyl-lysyl (OAK) antimicrobial peptidomimetic, C(12)K-2ß(12), that shows potent in vitro bactericidal activity against H. pylori. Herein, we define the mechanism of action and evaluate the in vivo efficacy of C(12)K-2ß(12) against H. pylori after experimental infection of Mongolian gerbils. We demonstrate using a 1-N-phenylnaphthylamine (fluorescent probe) uptake assay and electron microscopy that C(12)K-2ß(12) rapidly permeabilizes the bacterial membrane and creates pores that cause bacterial cell lysis. Furthermore, using nucleic acid binding assays, Western blots, and confocal microscopy, we show that C(12)K-2ß(12) can cross the bacterial membranes into the cytoplasm and tightly bind to bacterial DNA, RNA, and proteins, a property that may result in inhibition of enzymatic activities and macromolecule synthesis. To define the in vivo efficacy of C(12)K-2ß(12), H. pylori-infected gerbils were orogastrically treated with increasing doses and concentrations of C(12)K-2ß(12) 1 day or 1 week postinfection. The efficacy of C(12)K-2ß(12) was strongest in animals that received the largest number of doses at the highest concentration, indicating dose-dependent activity of the peptide (P < 0.001 by analysis of variance [ANOVA]) regardless of the timing of the treatment with C(12)K-2ß(12). Overall, our results demonstrate a dual mode of action of C(12)K-2ß(12) against the H. pylori membrane and cytoplasmic components. Moreover, and consistent with the previously reported in vitro efficacy, C(12)K-2ß(12) shows significant in vivo efficacy against H. pylori when used as monotherapy. Therefore, OAK peptides may be a valuable resource for therapeutic treatment of H. pylori infection.


Assuntos
Antibacterianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Permeabilidade da Membrana Celular/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Helicobacter pylori/efeitos dos fármacos , Peptidomiméticos/administração & dosagem , 1-Naftilamina/análogos & derivados , Administração Oral , Animais , Antibacterianos/síntese química , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Western Blotting , DNA Bacteriano/metabolismo , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla , Corantes Fluorescentes , Gerbillinae , Infecções por Helicobacter/microbiologia , Helicobacter pylori/crescimento & desenvolvimento , Helicobacter pylori/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica , Peptidomiméticos/síntese química , Peptidomiméticos/metabolismo , Ligação Proteica , RNA Bacteriano/metabolismo , Estômago/efeitos dos fármacos , Estômago/microbiologia
7.
J Bacteriol ; 192(19): 5037-52, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20644138

RESUMO

The ferric uptake regulator (Fur) of the medically important pathogen Helicobacter pylori is unique in that it has been shown to function as a repressor both in the presence of an Fe2+ cofactor and in its apo (non-Fe2+-bound) form. However, virtually nothing is known concerning the amino acid residues that are important for Fur functioning. Therefore, mutations in six conserved amino acid residues of H. pylori Fur were constructed and analyzed for their impact on both iron-bound and apo repression. In addition, accumulation of the mutant proteins, protein secondary structure, DNA binding ability, iron binding capacity, and the ability to form higher-order structures were also examined for each mutant protein. While none of the mutated residues completely abrogated the function of Fur, we were able to identify residues that were critical for both iron-bound and apo-Fur repression. One mutation, V64A, did not alter regulation of any target genes. However, each of the five remaining mutations showed an effect on either iron-bound or apo regulation. Of these, H96A, E110A, and E117A mutations altered iron-bound Fur regulation and were all shown to influence iron binding to different extents. Additionally, the H96A mutation was shown to alter Fur oligomerization, and the E110A mutation was shown to impact oligomerization and DNA binding. Conversely, the H134A mutant exhibited changes in apo-Fur regulation that were the result of alterations in DNA binding. Although the E90A mutant exhibited alterations in apo-Fur regulation, this mutation did not affect any of the assessed protein functions. This study is the first for H. pylori to analyze the roles of specific amino acid residues of Fur in function and continues to highlight the complexity of Fur regulation in this organism.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Helicobacter pylori/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Western Blotting , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Helicobacter pylori/genética , Ferro/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Plasmídeos/genética , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
8.
Appl Environ Microbiol ; 73(23): 7506-14, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17921278

RESUMO

Helicobacter pylori is an important human pathogen. However, the study of this organism is often limited by a relative shortage of genetic tools. In an effort to expand the methods available for genetic study, an endogenous H. pylori plasmid was modified for use as a transcriptional reporter and as a complementation vector. This was accomplished by addition of an Escherichia coli origin of replication, a kanamycin resistance cassette, a promoterless gfpmut3 gene, and a functional multiple cloning site to form pTM117. The promoters of amiE and pfr, two well-characterized Fur-regulated promoters, were fused to the promoterless gfpmut3, and green fluorescent protein (GFP) expression of the fusions in wild-type and delta fur strains was analyzed by flow cytometry under iron-replete and iron-depleted conditions. GFP expression was altered as expected based on current knowledge of Fur regulation of these promoters. RNase protection assays were used to determine the ability of this plasmid to serve as a complementation vector by analyzing amiE, pfr, and fur expression in wild-type and delta fur strains carrying a wild-type copy of fur on the plasmid. Proper regulation of these genes was restored in the delta fur background under high- and low-iron conditions, signifying complementation of both iron-bound and apo Fur regulation. These studies show the potential of pTM117 as a molecular tool for genetic analysis of H. pylori.


Assuntos
Vetores Genéticos/genética , Helicobacter pylori/genética , Plasmídeos/genética , Transcrição Gênica/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Teste de Complementação Genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Mutação , Regiões Promotoras Genéticas/genética
9.
Front Microbiol ; 6: 558, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26124751

RESUMO

Helicobacter pylori NikR (HpNikR) is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA ) previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, ΔnikR and ΔarsS single mutants as well as a ΔarsS/nikR double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct "cross-talk" between HpArsRS and HpNikR at neutral pH has been demonstrated.

11.
J Microbiol ; 49(6): 987-93, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22203563

RESUMO

The purpose of this study was to evaluate the primary resistance rates of recent clinical Helicobacter pylori isolates to the most commonly used antibiotics in Iran. Two hundreds and ten patients presenting with gastric maladies between January and July of 2009 were enrolled in this study. Endoscopy was performed, and biopsy specimens were collected from each patient for subsequent bacterial culture of H. pylori. Single colony isolates from each patient were then used for antimicrobial susceptibility testing. The disk diffusion method was used to determine susceptibility patterns. One hundred and ninety-seven of the patients were H. pylori positive (93.8%). The rates of resistance to tetracycline, amoxicillin, ciprofloxacin, metronidazole, clarithromycin, and furizoladone were 37.1%, 23.9%, 34.5%, 65.5%, 45.2%, and 61.4%, respectively. A significant association between amoxicillin resistance and disease state (P<0.05) was identified. Furthermore, some double, triple, quadruple, and quintuple combinations of antibiotic resistance were found to be associated with disease state. This study evaluated the prevalence of H. pylori resistance to the most commonly prescribed antibiotics used in Iran and showed that resistance rates were generally higher than previously reported. This data adds to the growing body of evidence that suggests there is increasing antibiotic resistance among H. pylori isolates, which likely is responsible for the decreasing efficacy of anti-H. pylori therapy at the local and global level. Hence, there is a need for continued monitoring of resistance patterns, especially at the local level, and for incorporation of that information into treatment regimens for H. pylori infections.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Infecções por Helicobacter/microbiologia , Helicobacter pylori/efeitos dos fármacos , Adolescente , Adulto , Idoso , Feminino , Infecções por Helicobacter/epidemiologia , Helicobacter pylori/genética , Helicobacter pylori/isolamento & purificação , Humanos , Irã (Geográfico)/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
J Microbiol ; 48(3): 378-86, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20571957

RESUMO

The Ferric Uptake Regulator (Fur) is a transcriptional regulator that is conserved across a broad number of bacterial species and has been shown to regulate expression of iron uptake and storage genes. Additionally, Fur has been shown to be an important colonization factor of the gastric pathogen Helicobacter pylori. In H. pylori, Fur-dependent regulation appears to be unique in that Fur is able to act as a transcriptional repressor when bound to iron as well as in its iron free (apo) form. To date, apo-regulation has not been identified in any other bacterium. To determine whether Fur from other species has the capacity for apo-regulation, we investigated the ability of Fur from Escherichia coli, Campylobacter jejuni, Desulfovibrio vulgaris Hildenborough, Pseudomonas aeruginosa, and Vibrio cholerae to complement both iron-bound and apo-Fur regulation within the context of a H. pylori fur mutant. We found that while some Fur species (E. coli, C. jejuni, and V. cholerae) complemented iron-bound regulation, apo-regulation was unable to be complemented by any of the examined species. These data suggest that despite the conservation among bacterial Fur proteins, H. pylori Fur contains unique structure/function features that make it novel in comparison to Fur from other species.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Helicobacter pylori/genética , Proteínas Repressoras/genética , Sequência de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Proteínas de Bactérias/metabolismo , Sequência de Bases , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Sequência Conservada , Primers do DNA/genética , Desulfovibrio vulgaris/genética , Desulfovibrio vulgaris/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Helicobacter pylori/metabolismo , Ferro/metabolismo , Dados de Sequência Molecular , Plasmídeos/genética , Ligação Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
13.
PLoS One ; 4(4): e5369, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19399190

RESUMO

Helicobacter pylori is a significant human pathogen that has adapted to survive the many stresses found within the gastric environment. Superoxide Dismutase (SodB) is an important factor that helps H. pylori combat oxidative stress. sodB was previously shown to be repressed by the Ferric Uptake Regulator (Fur) in the absence of iron (apo-Fur regulation) [1]. Herein, we show that apo regulation is not fully conserved among all strains of H. pylori. apo-Fur dependent changes in sodB expression are not observed under iron deplete conditions in H. pylori strains G27, HPAG1, or J99. However, Fur regulation of pfr and amiE occurs as expected. Comparative analysis of the Fur coding sequence between G27 and 26695 revealed a single amino acid difference, which was not responsible for the altered sodB regulation. Comparison of the sodB promoters from G27 and 26695 also revealed a single nucleotide difference within the predicted Fur binding site. Alteration of this nucleotide in G27 to that of 26695 restored apo-Fur dependent sodB regulation, indicating that a single base difference is at least partially responsible for the difference in sodB regulation observed among these H. pylori strains. Fur binding studies revealed that alteration of this single nucleotide in G27 increased the affinity of Fur for the sodB promoter. Additionally, the single base change in G27 enabled the sodB promoter to bind to apo-Fur with affinities similar to the 26695 sodB promoter. Taken together these data indicate that this nucleotide residue is important for direct apo-Fur binding to the sodB promoter.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas Repressoras/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação/genética , Ligação Competitiva , Primers do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Genes Bacterianos , Helicobacter pylori/patogenicidade , Humanos , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico , Especificidade da Espécie
14.
J Bacteriol ; 189(8): 3296-301, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17277068

RESUMO

A transposon site hybridization (TraSH) assay was developed for functional analysis of the Bacillus anthracis genome using a mini-Tn10 transposon which permitted analysis of 82% of this pathogen's genes. The system, used to identify genes required for generation of infectious anthrax spores, spore germination, and optimal growth on rich medium, was predictive of the contributions of two conserved hypothetical genes for the phenotypes examined.


Assuntos
Bacillus anthracis/genética , Genes Bacterianos/fisiologia , Genômica , Bacillus anthracis/fisiologia , Elementos de DNA Transponíveis , Análise em Microsséries/métodos , Dados de Sequência Molecular , Mutagênese Insercional , Esporos Bacterianos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA