Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Biol Chem ; 299(6): 104740, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088134

RESUMO

Plexin-B1 is a receptor for the cell surface semaphorin, Sema4D. This signaling system has been implicated in a variety of human diseases, including cancer, multiple sclerosis and osteoporosis. While inhibitors of the Plexin-B1:Sema4D interaction have been previously reported, understanding their mechanism has been hindered by an incomplete structural view of Plexin-B1. In this study, we have raised and characterized a pair of nanobodies that are specific for mouse Plexin-B1 and which inhibit the binding of Sema4D to mouse Plexin-B1 and its biological activity. Structural studies of these nanobodies reveal that they inhibit the binding of Sema4D in an allosteric manner, binding to epitopes not previously reported. In addition, we report the first unbound structure of human Plexin-B1, which reveals that Plexin-B1 undergoes a conformational change on Sema4D binding. These changes mirror those seen upon binding of allosteric peptide modulators, which suggests a new model for understanding Plexin-B1 signaling and provides a potential innovative route for therapeutic modulation of Plexin-B1.


Assuntos
Moléculas de Adesão Celular , Semaforinas , Anticorpos de Domínio Único , Animais , Camundongos , Receptores de Superfície Celular/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Moléculas de Adesão Celular/metabolismo
2.
J Biol Chem ; 299(1): 102769, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470427

RESUMO

Programmed death-ligand 1 (PD-L1) is a key immune regulatory protein that interacts with programmed cell death protein 1 (PD-1), leading to T-cell suppression. Whilst this interaction is key in self-tolerance, cancer cells evade the immune system by overexpressing PD-L1. Inhibition of the PD-1/PD-L1 pathway with standard monoclonal antibodies has proven a highly effective cancer treatment; however, single domain antibodies (VHH) may offer numerous potential benefits. Here, we report the identification and characterization of a diverse panel of 16 novel VHHs specific to PD-L1. The panel of VHHs demonstrate affinities of 0.7 nM to 5.1 µM and were able to completely inhibit PD-1 binding to PD-L1. The binding site for each VHH on PD-L1 was determined using NMR chemical shift perturbation mapping and revealed a common binding surface encompassing the PD-1-binding site. Additionally, we solved crystal structures of two representative VHHs in complex with PD-L1, which revealed unique binding modes. Similar NMR experiments were used to identify the binding site of CD80 on PD-L1, which is another immune response regulatory element and interacts with PD-L1 localized on the same cell surface. CD80 and PD-1 were revealed to share a highly overlapping binding site on PD-L1, with the panel of VHHs identified expected to inhibit CD80 binding. Comparison of the CD80 and PD-1 binding sites on PD-L1 enabled the identification of a potential antibody binding region able to confer specificity for the inhibition of PD-1 binding only, which may offer therapeutic benefits to counteract cancer cell evasion of the immune system.


Assuntos
Anticorpos , Antígeno B7-1 , Antígeno B7-H1 , Receptor de Morte Celular Programada 1 , Humanos , Antígeno B7-1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias/terapia , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica , Sítios de Ligação , Cristalografia , Anticorpos/química , Anticorpos/metabolismo
3.
Proc Biol Sci ; 291(2016): 20232749, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38320605

RESUMO

Ecological communities can be stable over multiple generations, or rapidly shift into structurally and functionally different configurations. In kelp forest ecosystems, overgrazing by sea urchins can abruptly shift forests into alternative states that are void of macroalgae and primarily dominated by actively grazing sea urchins. Beginning in 2014, a sea urchin outbreak along the central coast of California resulted in a patchy mosaic of remnant forests interspersed with sea urchin barrens. In this study, we used a 14-year subtidal monitoring dataset of invertebrates, algae, and fishes to explore changes in community structure associated with the loss of forests. We found that the spatial mosaic of barrens and forests resulted in a region-wide shift in community structure. However, the magnitude of kelp forest loss and taxonomic-level consequences were spatially heterogeneous. Taxonomic diversity declined across the region, but there were no declines in richness for any group, suggesting compositional redistribution. Baseline ecological and environmental conditions, and sea urchin behaviour, explained the persistence of forests through multiple stressors. These results indicate that spatial heterogeneity in preexisting ecological and environmental conditions can explain patterns of community change.


Assuntos
Ecossistema , Kelp , Animais , Cadeia Alimentar , Florestas , Invertebrados , Ouriços-do-Mar
4.
Glob Chang Biol ; 29(19): 5634-5651, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37439293

RESUMO

Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014-2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.


Assuntos
Ecossistema , Kelp , Animais , Conservação dos Recursos Naturais/métodos , Biomassa , Invertebrados , Florestas , Peixes
5.
Mol Psychiatry ; 27(2): 840-848, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34776512

RESUMO

One of the hallmarks of Alzheimer's disease (AD) are deposits of amyloid-beta (Aß) protein in amyloid plaques in the brain. The Aß peptide exists in several forms, including full-length Aß1-42 and Aß1-40 - and the N-truncated species, pyroglutamate Aß3-42 and Aß4-42, which appear to play a major role in neurodegeneration. We previously identified a murine antibody (TAP01), which binds specifically to soluble, non-plaque N-truncated Aß species. By solving crystal structures for TAP01 family antibodies bound to pyroglutamate Aß3-14, we identified a novel pseudo ß-hairpin structure in the N-terminal region of Aß and show that this underpins its unique binding properties. We engineered a stabilised cyclic form of Aß1-14 (N-Truncated Amyloid Peptide AntibodieS; the 'TAPAS' vaccine) and showed that this adopts the same 3-dimensional conformation as the native sequence when bound to TAP01. Active immunisation of two mouse models of AD with the TAPAS vaccine led to a striking reduction in amyloid-plaque formation, a rescue of brain glucose metabolism, a stabilisation in neuron loss, and a rescue of memory deficiencies. Treating both models with the humanised version of the TAP01 antibody had similar positive effects. Here we report the discovery of a unique conformational epitope in the N-terminal region of Aß, which offers new routes for active and passive immunisation against AD.


Assuntos
Doença de Alzheimer , Vacinas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Anticorpos/metabolismo , Encéfalo/metabolismo , Camundongos , Fragmentos de Peptídeos/metabolismo , Placa Amiloide/metabolismo , Ácido Pirrolidonocarboxílico/metabolismo , Vacinas/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(6): 3093-3102, 2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-31980531

RESUMO

The catalytic activity of the protease MALT1 is required for adaptive immune responses and regulatory T (Treg)-cell development, while dysregulated MALT1 activity can lead to lymphoma. MALT1 activation requires its monoubiquitination on lysine 644 (K644) within the Ig3 domain, localized adjacent to the protease domain. The molecular requirements for MALT1 monoubiquitination and the mechanism by which monoubiquitination activates MALT1 had remained elusive. Here, we show that the Ig3 domain interacts directly with ubiquitin and that an intact Ig3-ubiquitin interaction surface is required for the conjugation of ubiquitin to K644. Moreover, by generating constitutively active MALT1 mutants that overcome the need for monoubiquitination, we reveal an allosteric communication between the ubiquitination site K644, the Ig3-protease interaction surface, and the active site of the protease domain. Finally, we show that MALT1 mutants that alter the Ig3-ubiquitin interface impact the biological response of T cells. Thus, ubiquitin binding by the Ig3 domain promotes MALT1 activation by an allosteric mechanism that is essential for its biological function.


Assuntos
Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa , Ubiquitina , Ubiquitinação , Regulação Alostérica , Células HEK293 , Humanos , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/química , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/genética , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Mutação , Ligação Proteica , Domínios Proteicos , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitinação/genética , Ubiquitinação/fisiologia
7.
Proc Natl Acad Sci U S A ; 117(29): 16949-16960, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32616569

RESUMO

Affinity maturation is a powerful technique in antibody engineering for the in vitro evolution of antigen binding interactions. Key to the success of this process is the expansion of sequence and combinatorial diversity to increase the structural repertoire from which superior binding variants may be selected. However, conventional strategies are often restrictive and only focus on small regions of the antibody at a time. In this study, we used a method that combined antibody chain shuffling and a staggered-extension process to produce unbiased libraries, which recombined beneficial mutations from all six complementarity-determining regions (CDRs) in the affinity maturation of an inhibitory antibody to Arginase 2 (ARG2). We made use of the vast display capacity of ribosome display to accommodate the sequence space required for the diverse library builds. Further diversity was introduced through pool maturation to optimize seven leads of interest simultaneously. This resulted in antibodies with substantial improvements in binding properties and inhibition potency. The extensive sequence changes resulting from this approach were translated into striking structural changes for parent and affinity-matured antibodies bound to ARG2, with a large reorientation of the binding paratope facilitating increases in contact surface and shape complementarity to the antigen. The considerable gains in therapeutic properties seen from extensive sequence and structural evolution of the parent ARG2 inhibitory antibody clearly illustrate the advantages of the unbiased approach developed, which was key to the identification of high-affinity antibodies with the desired inhibitory potency and specificity.


Assuntos
Anticorpos/química , Afinidade de Anticorpos , Arginase/imunologia , Regiões Determinantes de Complementaridade/química , Anticorpos/genética , Anticorpos/imunologia , Sítios de Ligação de Anticorpos , Regiões Determinantes de Complementaridade/imunologia , Humanos
8.
Cytokine ; 142: 155476, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33706174

RESUMO

The proinflammatory cytokines IL-17A and IL-17F have been identified as key drivers of a range of human inflammatory diseases, such as psoriasis, which has led to several therapeutic antibodies targeted at IL-17A. The two cytokines have been shown to tightly associate as functional homo and hetero dimers, which induce signalling via the formation of a cell surface signalling complex with a single copy of both IL-17RA and IL-17RC. Striking differences in affinity have been observed for IL-17RA binding to IL-17AA, IL-17AF and IL-17FF, however, the functional significance and molecular basis for this has remained unclear. We have obtained comprehensive backbone NMR assignments for full length IL-17AA (79%), IL-17AF (93%) and IL-17FF (89%), which show that the dimers adopt almost identical backbone topologies in solution to those observed in reported crystal structures. Analysis of the line widths and intensities of assigned backbone amide NMR signals has revealed striking differences in the conformational plasticity and dynamics of IL-17AA compared to both IL-17AF and IL-17FF. Our NMR data indicate that a number of regions of IL-17AA are interconverting between at least two distinct conformations on a relatively slow timescale. Such conformational heterogeneity has previously been shown to play an important role in the formation of many high affinity protein-protein complexes. The locations of the affected IL-17AA residues essentially coincides with the regions of both IL-17A and IL-17F previously shown to undergo significant structural changes on binding to IL-17RA. Substantially less conformational exchange was revealed by the NMR data for IL-17FF and IL-17AF. We propose that the markedly different conformational dynamic properties of the distinct functional IL-17 dimers plays a key role in determining their affinities for IL-17RA, with the more dynamic and plastic nature of IL-17AA contributing to the significantly tighter affinity observed for binding to IL-17RA. In contrast, the dynamic properties are expected to have little influence on the affinity of IL-17 dimers for IL-17RC, which has recently been shown to induce only small structural changes in IL-17FF upon binding.


Assuntos
Interleucina-17/química , Interleucina-17/metabolismo , Receptores de Interleucina-17/metabolismo , Sequência de Aminoácidos , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Multimerização Proteica
9.
PLoS Biol ; 16(5): e2006192, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29782488

RESUMO

Aiming at the design of an allosteric modulator of the neonatal Fc receptor (FcRn)-Immunoglobulin G (IgG) interaction, we developed a new methodology including NMR fragment screening, X-ray crystallography, and magic-angle-spinning (MAS) NMR at 100 kHz after sedimentation, exploiting very fast spinning of the nondeuterated soluble 42 kDa receptor construct to obtain resolved proton-detected 2D and 3D NMR spectra. FcRn plays a crucial role in regulation of IgG and serum albumin catabolism. It is a clinically validated drug target for the treatment of autoimmune diseases caused by pathogenic antibodies via the inhibition of its interaction with IgG. We herein present the discovery of a small molecule that binds into a conserved cavity of the heterodimeric, extracellular domain composed of an α-chain and ß2-microglobulin (ß2m) (FcRnECD, 373 residues). X-ray crystallography was used alongside NMR at 100 kHz MAS with sedimented soluble protein to explore possibilities for refining the compound as an allosteric modulator. Proton-detected MAS NMR experiments on fully protonated [13C,15N]-labeled FcRnECD yielded ligand-induced chemical-shift perturbations (CSPs) for residues in the binding pocket and allosteric changes close to the interface of the two receptor heterodimers present in the asymmetric unit as well as potentially in the albumin interaction site. X-ray structures with and without ligand suggest the need for an optimized ligand to displace the α-chain with respect to ß2m, both of which participate in the FcRnECD-IgG interaction site. Our investigation establishes a method to characterize structurally small molecule binding to nondeuterated large proteins by NMR, even in their glycosylated form, which may prove highly valuable for structure-based drug discovery campaigns.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Receptores Fc/metabolismo , Sítio Alostérico , Cristalografia por Raios X , Células HEK293 , Humanos , Ligantes
10.
Glob Chang Biol ; 26(11): 6457-6473, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32902090

RESUMO

The changing global climate is having profound effects on coastal marine ecosystems around the world. Structure, functioning, and resilience, however, can vary geographically, depending on species composition, local oceanographic forcing, and other pressures from human activities and use. Understanding ecological responses to environmental change and predicting changes in the structure and functioning of whole ecosystems require large-scale, long-term studies, yet most studies trade spatial extent for temporal duration. We address this shortfall by integrating multiple long-term kelp forest monitoring datasets to evaluate biogeographic patterns and rates of change of key functional groups (FG) along the west coast of North America. Analysis of data from 469 sites spanning Alaska, USA, to Baja California, Mexico, and 373 species (assigned to 18 FG) reveals regional variation in responses to both long-term (2006-2016) change and a recent marine heatwave (2014-2016) associated with two atmospheric and oceanographic anomalies, the "Blob" and extreme El Niño Southern Oscillation (ENSO). Canopy-forming kelps appeared most sensitive to warming throughout their range. Other FGs varied in their responses among trophic levels, ecoregions, and in their sensitivity to heatwaves. Changes in community structure were most evident within the southern and northern California ecoregions, while communities in the center of the range were more resilient. We report a poleward shift in abundance of some key FGs. These results reveal major, ongoing region-wide changes in productive coastal marine ecosystems in response to large-scale climate variability, and the potential loss of foundation species. In particular, our results suggest that coastal communities that are dependent on kelp forests will be more impacted in the southern portion of the California Current region, highlighting the urgency of implementing adaptive strategies to sustain livelihoods and ensure food security. The results also highlight the value of multiregional integration and coordination of monitoring programs for improving our understanding of marine ecosystems, with the goal of informing policy and resource management in the future.


Assuntos
Kelp , Alaska , California , Ecossistema , Florestas , Humanos , México
11.
J Biol Chem ; 293(31): 12149-12166, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29925589

RESUMO

Dickkopf (Dkk) family proteins are important regulators of Wnt signaling pathways, which play key roles in many essential biological processes. Here, we report the first detailed structural and dynamics study of a full-length mature Dkk protein (Dkk4, residues 19-224), including determination of the first atomic-resolution structure for the N-terminal cysteine-rich domain (CRD1) conserved among Dkk proteins. We discovered that CRD1 has significant structural homology to the Dkk C-terminal cysteine-rich domain (CRD2), pointing to multiple gene duplication events during Dkk family evolution. We also show that Dkk4 consists of two independent folded domains (CRD1 and CRD2) joined by a highly flexible, nonstructured linker. Similarly, the N-terminal region preceding CRD1 and containing a highly conserved NXI(R/K) sequence motif was shown to be dynamic and highly flexible. We demonstrate that Dkk4 CRD2 mediates high-affinity binding to both the E1E2 region of low-density lipoprotein receptor-related protein 6 (LRP6 E1E2) and the Kremen1 (Krm1) extracellular domain. In contrast, the N-terminal region alone bound with only moderate affinity to LRP6 E1E2, consistent with binding via the conserved NXI(R/K) motif, but did not interact with Krm proteins. We also confirmed that Dkk and Krm family proteins function synergistically to inhibit Wnt signaling. Insights provided by our integrated structural, dynamics, interaction, and functional studies have allowed us to refine the model of synergistic regulation of Wnt signaling by Dkk proteins. Our results indicate the potential for the formation of a diverse range of ternary complexes comprising Dkk, Krm, and LRP5/6 proteins, allowing fine-tuning of Wnt-dependent signaling.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Sequência de Aminoácidos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ligação Proteica , Domínios Proteicos , Alinhamento de Sequência , Via de Sinalização Wnt
12.
Mol Ecol ; 28(7): 1611-1623, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30739378

RESUMO

Marine species with pelagic larvae typically exhibit little population structure, suggesting long-distance dispersal and high gene flow. Directly quantifying dispersal of marine fishes is challenging but important, particularly for the design of marine protected areas (MPAs). Here, we studied kelp rockfish (Sebastes atrovirens) sampled along ~25 km of coastline in a boundary current-dominated ecosystem and used genetic parentage analysis to identify dispersal events and characterize them, because the distance between sedentary parents and their settled offspring is the lifetime dispersal distance. Large sample sizes and intensive sampling are critical for increasing the likelihood of detecting parent-offspring matches in such systems and we sampled more than 6,000 kelp rockfish and analysed them with a powerful set of 96 microhaplotype markers. We identified eight parent-offspring pairs with high confidence, including two juvenile fish that were born inside MPAs and dispersed to areas outside MPAs, and four fish born in MPAs that dispersed to nearby MPAs. Additionally, we identified 25 full-sibling pairs, which occurred throughout the sampling area and included all possible combinations of inferred dispersal trajectories. Intriguingly, these included two pairs of young-of-the-year siblings with one member each sampled in consecutive years. These sibling pairs suggest monogamy, either intentional or accidental, which has not been previously demonstrated in rockfishes. This study provides the first direct observation of larval dispersal events in a current-dominated ecosystem and direct evidence that larvae produced within MPAs are exported both to neighbouring MPAs and to proximate areas where harvest is allowed.


Assuntos
Distribuição Animal , Genética Populacional , Perciformes/genética , Animais , California , Ecossistema , Pesqueiros , Marcadores Genéticos , Haplótipos , Repetições de Microssatélites , Linhagem
13.
Proc Natl Acad Sci U S A ; 113(48): 13785-13790, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27849580

RESUMO

Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y-1). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y-1), increases in 27% of ecoregions (0.015 to 0.11 y-1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.


Assuntos
Ecossistema , Florestas , Kelp/crescimento & desenvolvimento , Regiões Árticas , Mudança Climática , Oceanos e Mares
14.
J Biol Chem ; 291(32): 16840-8, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27231345

RESUMO

Interleukin-16 (IL-16) is reported to be a chemoattractant cytokine and modulator of T-cell activation, and has been proposed as a ligand for the co-receptor CD4. The secreted active form of IL-16 has been detected at sites of TH1-mediated inflammation, such as those seen in autoimmune diseases, ischemic reperfusion injury (IRI), and tissue transplant rejection. Neutralization of IL-16 recruitment to its receptor, using an anti-IL16 antibody, has been shown to significantly attenuate inflammation and disease pathology in IRI, as well as in some autoimmune diseases. The 14.1 antibody is a monoclonal anti-IL-16 antibody, which when incubated with CD4(+) cells is reported to cause a reduction in the TH1-type inflammatory response. Secreted IL-16 contains a characteristic PDZ domain. PDZ domains are typically characterized by a defined globular structure, along with a peptide-binding site located in a groove between the αB and ßB structural elements and a highly conserved carboxylate-binding loop. In contrast to other reported PDZ domains, the solution structure previously reported for IL-16 reveals a tryptophan residue obscuring the recognition groove. We have solved the structure of the 14.1Fab fragment in complex with IL-16, revealing that binding of the antibody requires a conformational change in the IL-16 PDZ domain. This involves the rotation of the αB-helix, accompanied movement of the peptide groove obscuring tryptophan residue, and consequent opening up of the binding site for interaction. Our study reveals a surprising mechanism of action for the antibody and identifies new opportunities for the development of IL-16-targeted therapeutics, including small molecules that mimic the interaction of the antibody.


Assuntos
Anticorpos Monoclonais/química , Sítios de Ligação de Anticorpos , Fragmentos Fab das Imunoglobulinas/química , Interleucina-16/química , Cristalografia por Raios X , Humanos , Domínios Proteicos , Estrutura Secundária de Proteína
15.
Ecol Appl ; 26(8): 2675-2692, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27907261

RESUMO

Integral projection models (IPMs) have a number of advantages over matrix-model approaches for analyzing size-structured population dynamics, because the latter require parameter estimates for each age or stage transition. However, IPMs still require appropriate data. Typically they are parameterized using individual-scale relationships between body size and demographic rates, but these are not always available. We present an alternative approach for estimating demographic parameters from time series of size-structured survey data using a Bayesian state-space IPM (SSIPM). By fitting an IPM in a state-space framework, we estimate unknown parameters and explicitly account for process and measurement error in a dataset to estimate the underlying process model dynamics. We tested our method by fitting SSIPMs to simulated data; the model fit the simulated size distributions well and estimated unknown demographic parameters accurately. We then illustrated our method using nine years of annual surveys of the density and size distribution of two fish species (blue rockfish, Sebastes mystinus, and gopher rockfish, S. carnatus) at seven kelp forest sites in California. The SSIPM produced reasonable fits to the data, and estimated fishing rates for both species that were higher than our Bayesian prior estimates based on coast-wide stock assessment estimates of harvest. That improvement reinforces the value of being able to estimate demographic parameters from local-scale monitoring data. We highlight a number of key decision points in SSIPM development (e.g., open vs. closed demography, number of particles in the state-space filter) so that users can apply the method to their own datasets.


Assuntos
Teorema de Bayes , Modelos Biológicos , Animais , California , Demografia , Dinâmica Populacional
16.
J Biol Chem ; 289(10): 7200-7210, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24436329

RESUMO

Specific, high affinity protein-protein interactions lie at the heart of many essential biological processes, including the recognition of an apparently limitless range of foreign proteins by natural antibodies, which has been exploited to develop therapeutic antibodies. To mediate biological processes, high affinity protein complexes need to form on appropriate, relatively rapid timescales, which presents a challenge for the productive engagement of complexes with large and complex contact surfaces (∼600-1800 Å(2)). We have obtained comprehensive backbone NMR assignments for two distinct, high affinity antibody fragments (single chain variable and antigen-binding (Fab) fragments), which recognize the structurally diverse cytokines interleukin-1ß (IL-1ß, ß-sheet) and interleukin-6 (IL-6, α-helical). NMR studies have revealed that the hearts of the antigen binding sites in both free anti-IL-1ß Fab and anti-IL-6 single chain variable exist in multiple conformations, which interconvert on a timescale comparable with the rates of antibody-antigen complex formation. In addition, we have identified a conserved antigen binding-induced change in the orientation of the two variable domains. The observed conformational heterogeneity and slow dynamics at protein antigen binding sites appears to be a conserved feature of many high affinity protein-protein interfaces structurally characterized by NMR, suggesting an essential role in protein complex formation. We propose that this behavior may reflect a soft capture, protein-protein docking mechanism, facilitating formation of high affinity protein complexes on a timescale consistent with biological processes.


Assuntos
Anticorpos Monoclonais Humanizados/química , Afinidade de Anticorpos , Complexo Antígeno-Anticorpo/química , Antígenos/imunologia , Fragmentos Fab das Imunoglobulinas/química , Interleucina-1beta/imunologia , Interleucina-6/imunologia , Sequência de Aminoácidos , Antígenos/química , Humanos , Interleucina-1beta/química , Interleucina-6/química , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
17.
J Biol Chem ; 288(20): 14438-14450, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-23548911

RESUMO

RNA polymerase-binding protein A (RbpA), encoded by Rv2050, is specific to the actinomycetes, where it is highly conserved. In the pathogen Mycobacterium tuberculosis, RbpA is essential for growth and survival. RbpA binds to the ß subunit of the RNA polymerase where it activates transcription by unknown mechanisms, and it may also influence the response of M. tuberculosis to the current frontline anti-tuberculosis drug rifampicin. Here we report the solution structure of RbpA and identify the principle sigma factor σ(A) and the stress-induced σ(B) as interaction partners. The protein has a central ordered domain with a conserved hydrophobic surface that may be a potential protein interaction site. The N and C termini are highly dynamic and are involved in the interaction with the sigma factors. RbpA forms a tight complex with the N-terminal domain of σ(B) via its N- and C-terminal regions. The interaction with sigma factors may explain how RbpA stabilizes sigma subunit binding to the core RNA polymerase and thereby promotes initiation complex formation. RbpA could therefore influence the competition between principal and alternative sigma factors and hence the transcription profile of the cell.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Mutação , Mycobacterium tuberculosis/metabolismo , Fator sigma/metabolismo , Transativadores/química , Actinobacteria/metabolismo , Proteínas de Bactérias/genética , Sítios de Ligação , Teste de Complementação Genética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Fenótipo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Transativadores/genética , Transcrição Gênica , Técnicas do Sistema de Duplo-Híbrido
18.
J Biol Chem ; 288(17): 11771-85, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23417675

RESUMO

PD-1, a receptor expressed by T cells, B cells, and monocytes, is a potent regulator of immune responses and a promising therapeutic target. The structure and interactions of human PD-1 are, however, incompletely characterized. We present the solution nuclear magnetic resonance (NMR)-based structure of the human PD-1 extracellular region and detailed analyses of its interactions with its ligands, PD-L1 and PD-L2. PD-1 has typical immunoglobulin superfamily topology but differs at the edge of the GFCC' sheet, which is flexible and completely lacks a C" strand. Changes in PD-1 backbone NMR signals induced by ligand binding suggest that, whereas binding is centered on the GFCC' sheet, PD-1 is engaged by its two ligands differently and in ways incompletely explained by crystal structures of mouse PD-1 · ligand complexes. The affinities of these interactions and that of PD-L1 with the costimulatory protein B7-1, measured using surface plasmon resonance, are significantly weaker than expected. The 3-4-fold greater affinity of PD-L2 versus PD-L1 for human PD-1 is principally due to the 3-fold smaller dissociation rate for PD-L2 binding. Isothermal titration calorimetry revealed that the PD-1/PD-L1 interaction is entropically driven, whereas PD-1/PD-L2 binding has a large enthalpic component. Mathematical simulations based on the biophysical data and quantitative expression data suggest an unexpectedly limited contribution of PD-L2 to PD-1 ligation during interactions of activated T cells with antigen-presenting cells. These findings provide a rigorous structural and biophysical framework for interpreting the important functions of PD-1 and reveal that potent inhibitory signaling can be initiated by weakly interacting receptors.


Assuntos
Células Apresentadoras de Antígenos , Antígeno B7-H1 , Comunicação Celular , Proteína 2 Ligante de Morte Celular Programada 1 , Receptor de Morte Celular Programada 1 , Linfócitos T , Animais , Células Apresentadoras de Antígenos/química , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígeno B7-1/química , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Antígeno B7-1/metabolismo , Antígeno B7-H1/química , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Comunicação Celular/imunologia , Humanos , Camundongos , Modelos Imunológicos , Ressonância Magnética Nuclear Biomolecular , Proteína 2 Ligante de Morte Celular Programada 1/química , Proteína 2 Ligante de Morte Celular Programada 1/genética , Proteína 2 Ligante de Morte Celular Programada 1/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/química , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície , Linfócitos T/química , Linfócitos T/imunologia , Linfócitos T/metabolismo
19.
Adv Mar Biol ; 69: 205-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25358301

RESUMO

California responded to concerns about overfishing in the 1990s by implementing a network of marine protected areas (MPAs) through two science-based decision-making processes. The first process focused on the Channel Islands, and the second addressed California's entire coastline, pursuant to the state's Marine Life Protection Act (MLPA). We review the interaction between science and policy in both processes, and lessons learned. For the Channel Islands, scientists controversially recommended setting aside 30-50% of coastline to protect marine ecosystems. For the MLPA, MPAs were intended to be ecologically connected in a network, so design guidelines included minimum size and maximum spacing of MPAs (based roughly on fish movement rates), an approach that also implicitly specified a minimum fraction of the coastline to be protected. As MPA science developed during the California processes, spatial population models were constructed to quantify how MPAs were affected by adult fish movement and larval dispersal, i.e., how population persistence within MPA networks depended on fishing outside the MPAs, and how fishery yields could either increase or decrease with MPA implementation, depending on fishery management. These newer quantitative methods added to, but did not supplant, the initial rule-of-thumb guidelines. In the future, similar spatial population models will allow more comprehensive evaluation of the integrated effects of MPAs and conventional fisheries management. By 2011, California had implemented 132 MPAs covering more than 15% of its coastline, and now stands on the threshold of the most challenging step in this effort: monitoring and adaptive management to ensure ecosystem sustainability.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , California , Conservação dos Recursos Naturais/legislação & jurisprudência , Peixes , Regulamentação Governamental , Oceano Pacífico , Governo Estadual
20.
J Biol Chem ; 287(47): 40043-50, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23027872

RESUMO

A number of secreted cytokines, such as interleukin-6 (IL-6), are attractive targets for the treatment of inflammatory diseases. We have determined the solution structure of mouse IL-6 to assess the functional significance of apparent differences in the receptor interaction sites (IL-6Rα and gp130) suggested by the fairly low degree of sequence similarity with human IL-6. Structure-based sequence alignment of mouse IL-6 and human IL-6 revealed surprising differences in the conservation of the two distinct gp130 binding sites (IIa and IIIa), which suggests a primacy for site III-mediated interactions in driving initial assembly of the IL-6/IL-6Rα/gp130 ternary complex. This is further supported by a series of direct binding experiments, which clearly demonstrate a high affinity IL-6/IL-6Rα-gp130 interaction via site III but only weak binding via site II. Collectively, our findings suggest a pathway for the evolution of the hexameric, IL-6/IL-6Rα/gp130 signaling complex and strategies for therapeutic targeting. We propose that the signaling complex originally involved specific interactions between IL-6 and IL-6Rα (site I) and between the D1 domain of gp130 and IL-6/IL-6Rα (site III), with the later inclusion of interactions between the D2 and D3 domains of gp130 and IL-6/IL-6Rα (site II) through serendipity. It seems likely that IL-6 signaling benefited from the evolution of a multipurpose, nonspecific protein interaction surface on gp130, now known as the cytokine binding homology region (site II contact surface), which fortuitously contributes to stabilization of the IL-6/IL-6Rα/gp130 signaling complex.


Assuntos
Receptor gp130 de Citocina/química , Evolução Molecular , Interleucina-6/química , Complexos Multiproteicos/química , Receptores de Interleucina-6/química , Animais , Sítios de Ligação , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/terapia , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mapeamento de Peptídeos/métodos , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA