Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(30): 20310-20324, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38984472

RESUMO

The effect of nuclear vibrations on the electronic eigenvalues and the HOMO-LUMO gap is known for several kinds of carbon-based materials, like diamond, diamondoids, carbon nanoclusters, carbon nanotubes and others, like hydrogen-terminated oligoynes and polyyne. However, it has not been widely analysed in another remarkable kind which presents both theoretical and technological interest: fullerenes. In this article we present the study of the HOMO, LUMO and gap renormalizations due to zero-point motion of a relatively large number (163) of fullerenes and fullerene derivatives. We have calculated this renormalization using density-functional theory with the frozen-phonon method, finding that it is non-negligible (above 0.1 eV) for systems with relevant technological applications in photovoltaics and that the strength of the renormalization increases with the size of the gap. In addition, we have applied machine learning methods for classification and regression of the renormalizations, finding that they can be approximately predicted using the output of a computationally cheap ground state calculation. Our conclusions are supported by recent research in other systems.

2.
J Chem Phys ; 161(2)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-38990116

RESUMO

MiMiC is a framework for performing multiscale simulations in which loosely coupled external programs describe individual subsystems at different resolutions and levels of theory. To make it highly efficient and flexible, we adopt an interoperable approach based on a multiple-program multiple-data (MPMD) paradigm, serving as an intermediary responsible for fast data exchange and interactions between the subsystems. The main goal of MiMiC is to avoid interfering with the underlying parallelization of the external programs, including the operability on hybrid architectures (e.g., CPU/GPU), and keep their setup and execution as close as possible to the original. At the moment, MiMiC offers an efficient implementation of electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) that has demonstrated unprecedented parallel scaling in simulations of large biomolecules using CPMD and GROMACS as QM and MM engines, respectively. However, as it is designed for high flexibility with general multiscale models in mind, it can be straightforwardly extended beyond QM/MM. In this article, we illustrate the software design and the features of the framework, which make it a compelling choice for multiscale simulations in the upcoming era of exascale high-performance computing.

3.
Chemistry ; 29(5): e202202933, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36322429

RESUMO

The red shift under pressure in optical transitions of layered compounds with CuCl6 4- units is explored through first-principles calculations and the analysis of available experimental data. The results on Cu2+ -doped (C2 H5 NH3 )2 CdCl4 , that is taken as a guide, show the existence of a highly anisotropic response to pressure related to a structural instability, driven by a negative force constant, that leads to an orthorhombic geometry of CuCl6 4- units but with a hole displaying a dominant 3z2 -r2 character (z being the direction perpendicular to the layer plane). As a result of such an instability, a pressure of only 3 GPa reduces by 0.21 Šthe longest Cu2+ -Cl- distance, lying in the layer plane, while leaving unmodified the two other metal-ligand distances. Owing to this fact, it is shown that the lowest d-d transition would experience a red shift of 0.34 eV while the first allowed charge transfer transition is also found to be red shifted but only by 0.11 eV that reasonably concurs with the experimental value. The parallel study on Jahn-Teller systems CdCl2 :Cu2+ and NaCl:Cu2+ involving tetragonal elongated CuCl6 4- units shows that the reduction of the long axis by a pressure of 3 GPa is three times smaller than that for the layered (C2 H5 NH3 )2 CdCl4 :Cu2+ compound. Accordingly, the optical transitions of such systems, which involve a positive force constant, are much less sensitive to pressure than in layered compounds. The origin of the red shift under pressure undergone by the lowest d-d and charge transfer transitions of (C2 H5 NH3 )2 CdCl4 :Cu2+ is discussed in detail.


Assuntos
Cobre , Óxidos , Cobre/química
4.
Chemistry ; 28(43): e202200948, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35638136

RESUMO

The pressure-induced switch of the long axis of MnF6 3- units in the monoclinic Na3 MnF6 compound and Mn3+ -doped Na3 FeF6 is explored with the help of first principles calculations. Although the switch phenomenon is usually related to the Jahn-Teller effect, we show that, due to symmetry reasons, it cannot take place in 3dn (n=4, 9) systems displaying a static Jahn-Teller effect. By contrast, we prove that in Na3 MnF6 the switch arises from the anisotropic response of the low symmetry lattice to hydrostatic pressure. Indeed, while the long axis of a MnF6 3- unit at ambient pressure corresponds to the Mn3+ -F3 - direction, close to the crystal c axis, at 2.79 GPa the c axis is reduced by 0.29 Šwhile b is unmodified. This fact is shown to force a change of the HOMO wavefunction favoring that the long axis becomes the Mn3+ -F2 - direction, not far from crystal b axis, after the subsequent relaxation process. The origin of the different d-d transitions observed for Na3 MnF6 and CrF2 at ambient pressure is also discussed together with changes induced by pressure in Na3 MnF6 . The present work opens a window for understanding the pressure effects upon low symmetry insulating compounds containing d4 or d9 ions.

5.
Curr Opin Struct Biol ; 86: 102821, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38688076

RESUMO

The complexity of biological systems and processes, spanning molecular to macroscopic scales, necessitates the use of multiscale simulations to get a comprehensive understanding. Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations are crucial for capturing processes beyond the reach of classical MD simulations. The advent of exascale computing offers unprecedented opportunities for scientific exploration, not least within life sciences, where simulations are essential to unravel intricate molecular mechanisms underlying biological processes. However, leveraging the immense computational power of exascale computing requires innovative algorithms and software designs. In this context, we discuss the current status and future prospects of multiscale biomolecular simulations on exascale supercomputers with a focus on QM/MM MD. We highlight our own efforts in developing a versatile and high-performance multiscale simulation framework with the aim of efficient utilization of state-of-the-art supercomputers. We showcase its application in uncovering complex biological mechanisms and its potential for leveraging exascale computing.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Software , Algoritmos
6.
J Chem Theory Comput ; 19(18): 6510-6520, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37665268

RESUMO

Polarizable embedding (PE) refers to classical embedding approaches, such as those used in quantum mechanics/molecular mechanics (QM/MM), that allow mutual polarization between the quantum and classical regions. The quality of the embedding potential is critical to provide accurate results, e.g., for spectroscopic properties and dynamical processes. High-quality embedding-potential parameters can be obtained by dividing the classical region into smaller fragments and deriving the parameters from ab initio calculations on the fragments. For solvents and other systems composed of small molecules, the fragments can be individual molecules, while a more complicated fragmentation procedure is needed for larger molecules, such as proteins and nucleic acids. One such fragmentation strategy is the molecular fractionation with conjugate caps (MFCC) approach. As is widely known, hydrogen bonds play a key role in many biomolecular systems, e.g., in proteins, where they are responsible for the secondary structure. In this work, we assess the effects of including hydrogen-bond fragmentation in the MFCC procedure [MFCC(HB)] for deriving the embedding-potential parameters. The MFCC(HB) extension is evaluated on several molecular systems, ranging from small model systems to proteins, directly in terms of molecular electrostatic potentials and embedding potentials and indirectly in terms of selected properties of chromophores embedded in water and complex protein environments.

7.
J Chem Theory Comput ; 19(15): 5122-5141, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37458793

RESUMO

We present a fully self-consistent polarizable embedding (PE) model that does not suffer from unphysical boundary polarization. This is achieved through the use of the minimum-image convention (MIC) in the induced electrostatics. It is a simple yet effective approach that includes a more physically accurate description of the polarization throughout the molecular system. Using PE with MIC (PE-MIC), we shed new light on the limitations of commonly employed cutoff models, such as the droplet model, when used in PE calculations. Specifically, we investigate the effects of the unphysical polarization at the outer boundary by comparing induced dipoles and the associated electrostatic potentials, as well as some optical properties of solute-solvent and biomolecular systems. We show that the magnitude of the inaccuracies caused by the unphysical polarization depends on multiple parameters: the nature of the quantum subsystem and of the environment, the cutoff model and distance, and the calculated property.

8.
ChemSusChem ; 14(9): 1973, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33852198

RESUMO

Invited for this month's cover is the Section for Atomic Scale Materials Modelling led by Prof. Tejs Vegge at the Department of Energy Conversion and Storage, Technical University of Denmark. The central image of the cover picture illustrates one of the chemical reaction mechanisms observed in a deep eutectic electrolyte formed by AlCl3 and urea. This is a promising electrolyte for inexpensive and environmentally friendly next-generation batteries based on aluminum. We have developed the computational techniques needed to identify chemical species and track reaction mechanisms across an ab initio molecular dynamics trajectory. The reaction mechanisms and speciation observed help to gain more insight in the development of such batteries. The Full Paper itself is available at 10.1002/cssc.202100163.

9.
ChemSusChem ; 14(9): 2034-2041, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33682346

RESUMO

Deep eutectic solvents (DESs) have emerged as an alternative for conventional ionic liquids in aluminum batteries. Elucidating DESs composition is fundamental to understand aluminum electrodeposition in the battery anode. Despite numerous experimental efforts, the speciation of these DESs remains elusive. This work shows how ab initio molecular dynamics (AIMD) simulations can shed light on the molecular composition of DESs. For the particular example of AlCl3 :urea, one of the most popular DESs, we carried out a systematic AIMD study, showing how an excess of AlCl3 in the AlCl3 :urea mixture promotes the stability of ionic species vs neutral ones and also favors the reactivity in the system. These two facts explain the experimentally observed enhanced electrochemical activity in salt-rich DESs. We also observe the transfer of simple [AlClx (urea)y ] clusters between different species in the liquid, giving rise to free [AlCl4 ]- units. The small size of these [AlCl4 ]- units favors the transport of ionic species towards the anode, facilitating the electrodeposition of aluminum.

10.
Struct Dyn ; 8(2): 024501, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33869663

RESUMO

Ultrafast, light-induced dynamics in copper-zinc-tin-sulfide (CZTS) photovoltaic nanoparticles are investigated through a combination of optical and x-ray transient absorption spectroscopy. Laser-pump, x-ray-probe spectroscopy on a colloidal CZTS nanoparticle ink yields element-specificity, which reveals a rapid photo-induced shift of electron density away from Cu-sites, affecting the molecular orbital occupation and structure of CZTS. We observe the formation of a stable charge-separated and thermally excited structure, which persists for nanoseconds and involves an increased charge density at the Zn sites. Combined with density functional theory calculations, the results provide new insight into the structural and electronic dynamics of CZTS absorbers for solar cells.

11.
ChemSusChem ; 13(20): 5523-5530, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32813325

RESUMO

It is possible to prepare elastic and thermoreversible gel electrolytes with significant electroactivity by dissolving minimal weight fractions of ultra-high molecular weight polyethylene oxide (UHMW PEO) in an aluminum deep eutectic solvent (DES) electrolyte composed of AlCl3 and urea at a molar ratio of 1.5 : 1 (AlCl3 /urea). The experimental vibrational spectra (FTIR and Raman) provide valuable information on the structure and composition of the gel electrolyte. However, the complexity of this system requires computational simulations to help interpretation of the experimental results. This combined approach allows us to elucidate the speciation of the DES liquid electrolyte in the gel and how it interacts with the polymer chains to give rise to an elastic network that retains the electroactivity of the liquid electrolyte to a very great extent. The observed reactions occur between the ether in the polymer and both the amine groups in urea and the aluminum species. Thus, similar elastomeric gels may likely be prepared with other aluminum liquid electrolytes, making this procedure an effective way to produce families of gel aluminum electrolytes with tunable rheology and electroactivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA