Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 33(2): e2778, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36383087

RESUMO

Kill rates are a central parameter to assess the impact of predation on prey species. An accurate estimation of kill rates requires a correct identification of kill sites, often achieved by field-checking GPS location clusters (GLCs). However, there are potential sources of error included in kill-site identification, such as failing to detect GLCs that are kill sites, and misclassifying the generated GLCs (e.g., kill for nonkill) that were not field checked. Here, we address these two sources of error using a large GPS dataset of collared Eurasian lynx (Lynx lynx), an apex predator of conservation concern in Europe, in three multiprey systems, with different combinations of wild, semidomestic, and domestic prey. We first used a subsampling approach to investigate how different GPS-fix schedules affected the detection of GLC-indicated kill sites. Then, we evaluated the potential of the random forest algorithm to classify GLCs as nonkills, small prey kills, and ungulate kills. We show that the number of fixes can be reduced from seven to three fixes per night without missing more than 5% of the ungulate kills, in a system composed of wild prey. Reducing the number of fixes per 24 h decreased the probability of detecting GLCs connected with kill sites, particularly those of semidomestic or domestic prey, and small prey. Random forest successfully predicted between 73%-90% of ungulate kills, but failed to classify most small prey in all systems, with sensitivity (true positive rate) lower than 65%. Additionally, removing domestic prey improved the algorithm's overall accuracy. We provide a set of recommendations for studies focusing on kill-site detection that can be considered for other large carnivore species in addition to the Eurasian lynx. We recommend caution when working in systems including domestic prey, as the odds of underestimating kill rates are higher.


Assuntos
Carnívoros , Lynx , Animais , Europa (Continente) , Comportamento Predatório , Probabilidade
2.
Biotropica ; 51(5): 781-791, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34937952

RESUMO

Identifying factors influencing the distribution of and interactions within carnivore communities is important for understanding how they are affected by human activities. Species differ in their ability to adapt to humans depending on their degree of specialization in habitat use and feeding habits. This results in asymmetric changes in the ecology of co-occurring species that can influence their interactions. We investigated whether human infrastructures and free-ranging domestic dogs (a species typically associated with humans) influenced the co-occurrence and habitat use of mesocarnivores in a landscape of high human population density in Maharashtra, India. We used 40 camera trap locations during 233 trapping nights and used Bayesian co-occurrence occupancy models to investigate the habitat use and coexistence of species at different spatial scales. Additionally, we investigated their temporal overlap in space use. Indian foxes altered their habitat use both spatially and temporally in order to avoid free-ranging domestic dogs and other larger competitors. The use of human infrastructure by jackals and jungle cats was limited by the presence of dogs. Our results illustrate how habitat use of smaller carnivore species changes both spatially and temporally in order to avoid larger competitors. We also show that the presence of species associated with humans mediates the influence of human infrastructures on the habitat use of mesocarnivores. We highlight the importance of acknowledging the potential impact of urbanization not only on single species, but also on the interactions within the community.

3.
Sci Rep ; 9(1): 6526, 2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31024020

RESUMO

Natal habitat preference induction (NHPI) occurs when characteristics of the natal habitat influence the future habitat selection of an animal. However, the influence of NHPI after the dispersal phase has received remarkably little attention. We tested whether exposure to humans in the natal habitat helps understand why some adult wolves Canis lupus may approach human settlements more than other conspecifics, a question of both ecological and management interest. We quantified habitat selection patterns within home ranges using resource selection functions and GPS data from 21 wolf pairs in Scandinavia. We identified the natal territory of each wolf with genetic parental assignment, and we used human-related characteristics within the natal territory to estimate the degree of anthropogenic influence in the early life of each wolf. When the female of the adult wolf pair was born in an area with a high degree of anthropogenic influence, the wolf pair tended to select areas further away from humans, compared to wolf pairs from natal territories with a low degree of anthropogenic influence. Yet the pattern was statistically weak, we suggest that our methodological approach can be useful in other systems to better understand NHPI and to inform management  about human-wildlife interactions.


Assuntos
Ecossistema , Lobos/fisiologia , Animais , Comportamento , Sistemas de Informação Geográfica , Geografia , Humanos , Modelos Teóricos , Análise de Componente Principal , Países Escandinavos e Nórdicos
4.
PLoS One ; 12(4): e0176200, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28423011

RESUMO

Sarcoptic mange is a widely distributed disease that affects numerous mammalian species. We used camera traps to investigate the apparent prevalence and spatiotemporal dynamics of sarcoptic mange in a red fox population in southeastern Norway. We monitored red foxes for five years using 305 camera traps distributed across an 18000 km2 area. A total of 6581 fox events were examined to visually identify mange compatible lesions. We investigated factors associated with the occurrence of mange by using logistic models within a Bayesian framework, whereas the spatiotemporal dynamics of the disease were analysed with space-time scan statistics. The apparent prevalence of the disease fluctuated over the study period with a mean of 3.15% and credible interval [1.25, 6.37], and our best logistic model explaining the presence of red foxes with mange-compatible lesions included time since the beginning of the study and the interaction between distance to settlement and season as explanatory variables. The scan analyses detected several potential clusters of the disease that varied in persistence and size, and the locations in the cluster with the highest probability were closer to human settlements than the other survey locations. Our results indicate that red foxes in an advanced stage of the disease are most likely found closer to human settlements during periods of low wild prey availability (winter). We discuss different potential causes. Furthermore, the disease appears to follow a pattern of small localized outbreaks rather than sporadic isolated events.


Assuntos
Raposas/parasitologia , Escabiose/epidemiologia , Escabiose/veterinária , Animais , Teorema de Bayes , Modelos Logísticos , Noruega/epidemiologia , Prevalência , Sarcoptes scabiei/fisiologia , Escabiose/parasitologia , Análise Espaço-Temporal , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA