RESUMO
Condensin is a multi-subunit structural maintenance of chromosomes (SMC) complex that binds to and compacts chromosomes. Here, we addressed the regulation of condensin binding dynamics using Caenorhabditis elegans condensin DC, which represses X chromosomes in hermaphrodites for dosage compensation. We established fluorescence recovery after photobleaching (FRAP) using the SMC4 homolog DPY-27 and showed that a well-characterized ATPase mutation abolishes DPY-27 binding to X chromosomes. Next, we performed FRAP in the background of several chromatin modifier mutants that cause varying degrees of X chromosome derepression. The greatest effect was in a null mutant of the H4K20me2 demethylase DPY-21, where the mobile fraction of condensin DC reduced from â¼30% to 10%. In contrast, a catalytic mutant of dpy-21 did not regulate condensin DC mobility. Hi-C sequencing data from the dpy-21 null mutant showed little change compared to wild-type data, uncoupling Hi-C-measured long-range DNA contacts from transcriptional repression of the X chromosomes. Taken together, our results indicate that DPY-21 has a non-catalytic role in regulating the dynamics of condensin DC binding, which is important for transcription repression.
Assuntos
Proteínas de Caenorhabditis elegans , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA , Histona Desmetilases , Histonas/genética , Lisina , Complexos Multiproteicos , Cromossomo X/metabolismoRESUMO
Base excision repair (BER) can protect a cell after endogenous or exogenous genotoxic stress, and a deficiency in BER can render a cell hypersensitive to stress-induced apoptotic and necrotic cell death, mutagenesis, and chromosomal rearrangements. However, understanding of the mammalian BER system is not yet complete as it is extraordinarily complex and has many back-up processes that complement a deficiency in any one step. Due of this lack of information, we are unable to make accurate predictions on therapeutic approaches targeting BER. A deeper understanding of BER will eventually allow us to conduct more meaningful clinical interventions. In this review, we will cover historical and recent information on mammalian BER and DNA polymerase ß and discuss approaches toward development and use of small molecule inhibitors to manipulate BER. With apologies to others, we will emphasize results obtained in our laboratory and those of our collaborators.
Assuntos
DNA Polimerase beta/antagonistas & inibidores , DNA Polimerase beta/metabolismo , Reparo do DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Animais , DNA Polimerase beta/química , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Humanos , Modelos MolecularesRESUMO
Although histone acetylation has historically been linked to transcription activation, recent studies indicate that this modification and the enzymes that catalyze it have much broader and diverse functions. Histone acetyltransferase complexes are involved in such diverse processes as transcription activation, gene silencing, DNA repair and cell-cycle progression. The high conservation of the acetyltransferase complexes and their functions illustrates their central role in cell growth and development.
Assuntos
Acetiltransferases/metabolismo , Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Ciclo Celular , Divisão Celular , Núcleo Celular/enzimologia , Reparo do DNA , Inativação Gênica , Histona Acetiltransferases , Humanos , Dados de Sequência Molecular , Transcrição Gênica , Ativação TranscricionalRESUMO
The histone code is among others established via differential acetylation catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs). To unambiguously determine the histone tail specificity of HDAC-containing complexes, we have established an in vitro system consisting of nucleosomal templates reconstituted with hyperacetylated histones or recombinant histones followed by acetylation with native SAGA or NuA4. Selective targeting of the mammalian Sin3/HDAC and N-CoR/SMRT corepressor complexes by using specific chimeric repressors created a near physiological setting to assess their histone tail specificity. Recruitment of the Sin3/HDAC complex to nucleosomal templates preacetylated with SAGA or NuA4 resulted in deacetylation of histones H3 and H4, whereas recruitment of N-CoR/SMRT resulted in deacetylation of histone H3 only. These results provide solid evidence that HDAC-containing complexes display distinct, intrinsic histone tail specificities and hence may function differently to regulate chromatin structure and transcription.
Assuntos
Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Cromatina/metabolismo , Células HeLa , Histona Desacetilases/genética , Histonas/química , Histonas/genética , Humanos , Técnicas In Vitro , Proteínas Nucleares/genética , Correpressor 1 de Receptor Nuclear , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3 , Especificidade por Substrato , XenopusRESUMO
Histone deacetylation by Saccharomyces cerevisiae Rpd3 represses genes regulated by the Ash1 and Ume6 DNA-binding proteins. Rpd3 exists in a small 0.6 MDa (Rpd3S) and large 1.2 MDa (Rpd3L) corepressor complex. In this report, we identify by mass spectrometry and MudPIT the subunits of the Rpd3L complex. These included Rpd3, Sds3, Pho23, Dep1, Rxt2, Sin3, Ash1, Ume1, Sap30, Cti6, Rxt3 and Ume6. Dep1 and Sds3, unique components of Rpd3L, were required for Rpd3L integrity and HDAC activity. Similar to RPD3, deletion of DEP1 enhanced telomeric silencing and derepressed INO1. Two sequence-specific repressors, Ash1 and Ume6, were stably associated with Rpd3L. While both of these proteins localized to the INO1 and HO promoters, the repression of these genes were dependent only on Ume6 and Ash1, respectively. Thus, the Rpd3L complex is directly recruited to specific promoters through multiple integral DNA-binding proteins.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Histona Desacetilases/genética , Complexos Multienzimáticos/fisiologia , Regiões Promotoras Genéticas , Subunidades Proteicas/metabolismo , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genéticaRESUMO
Treatment of PARP-1-expressing cells with the combination of a DNA methylating agent (MMS) and the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN) leads to an ATR/Chk1-dependent S phase checkpoint and cell death by apoptosis. Activation of ATM/Chk2 is involved in sustaining the S phase checkpoint, and double strand break (DSB) accumulation was demonstrated. NBS1, part of the MRN complex that responds to DSBs, is known to modulate ATR- and ATM-dependent checkpoint responses to UV and IR, but a role in the response to PARP inhibition has not been addressed. Here we show that the S phase checkpoint observed 4-8h after MMS+4-AN treatment was absent in cells deficient in NBS1, but was present in NBS1-complemented (i.e., functionally wild-type) cells, indicating a critical role for NBS1 in this checkpoint response. NBS1 was phosphorylated in response to MMS+4-AN treatment, and this was partially ATR- and ATM-dependent, suggesting involvement of both upstream kinases. NBS1 expression had little effect on ATR-mediated phosphorylation of Chk1 and ATM-mediated phosphorylation of Chk2 in response to MMS+4-AN. Phosphorylation of SMC1 was also observed in response to MMS+4-AN treatment. In the absence of ATM and NBS1, phosphorylation of SMC1 was weak, especially at early times after MMS+4-AN treatment. In the absence of ATR activation, reduced SMC1 phosphorylation was seen over a 24h time course. These results suggested that both ATR and ATM phosphorylate SMC1 in response to MMS+4-AN and that this phosphorylation is enhanced by phospho-NBS1. The loss of the MMS+4-AN-induced S phase checkpoint in NBS1-deficient cells may be due to a reduced cellular level of the critical downstream effector, phospho-SMC1.
Assuntos
1-Naftilamina/análogos & derivados , Proteínas de Ciclo Celular/fisiologia , Metilação de DNA , Metanossulfonato de Metila/farmacologia , Naftalimidas/farmacologia , Proteínas Nucleares/fisiologia , Quinolonas/farmacologia , Fase S/efeitos dos fármacos , 1-Naftilamina/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Citometria de Fluxo , Genes cdc , Humanos , Imunoprecipitação , Proteínas Nucleares/genética , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Fosforilação/fisiologia , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/fisiologia , Proteínas Quinases/genética , Proteínas Quinases/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologiaRESUMO
We have used EM and biochemistry to characterize the structure of NuA4, an essential yeast histone acetyltransferase (HAT) complex conserved throughout eukaryotes, and we have determined the interaction of NuA4 with the nucleosome core particle (NCP). The ATM-related Tra1 subunit, which is shared with the SAGA coactivator complex, forms a large domain joined to a second region that accommodates the catalytic subcomplex Piccolo and other NuA4 subunits. EM analysis of a NuA4-NCP complex shows the NCP bound at the periphery of NuA4. EM characterization of Piccolo and Piccolo-NCP provided further information about subunit organization and confirmed that histone acetylation requires minimal contact with the NCP. A small conserved region at the N terminus of Piccolo subunit enhancer of Polycomb-like 1 (Epl1) is essential for NCP interaction, whereas the subunit yeast homolog of mammalian Ing1 2 (Yng2) apparently positions Piccolo for efficient acetylation of histone H4 or histone H2A tails. Taken together, these results provide an understanding of the NuA4 subunit organization and the NuA4-NCP interactions.
Assuntos
Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Animais , Cromatina/metabolismo , Histona Acetiltransferases/genética , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Nucleossomos/química , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genéticaAssuntos
Bioquímica/métodos , Cromatina/química , Biotinilação , DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Magnetismo , Nucleossomos/química , Nucleossomos/metabolismo , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Saccharomyces cerevisiae/enzimologiaRESUMO
By limiting cell cycle progression following detection of DNA damage, checkpoints are critical for cell survival and genome stability. Methylated DNA damage, when combined with inhibition of PARP activity, results in an ATR-dependent S phase delay of the cell cycle. Here, we demonstrate that another checkpoint kinase, ATM, also is involved in the DNA damage response following treatment with a sub-lethal concentration of MMS combined with the PARP inhibitor 4-AN. Both ATM and PARP activities are important for moderating cellular sensitivity to MMS. Loss of ATM activity, or that of its downstream effector Chk2, limited the duration of the S phase delay. The combination of MMS and 4-AN resulted in ATM and Chk2 phosphorylation and the time course of phosphorylation for both kinases correlated with the S phase delay. Chk2 phosphorylation was reduced in the absence of ATM activity. The Chk2 phosphorylation that remained in the absence of ATM appeared to be dependent on ATR and DNA-PK. The results demonstrate that, following initiation of base excision repair and inhibition of PARP activity, ATM activation is critical for preventing the cell from progressing through S phase, and for protection against MMS-induced cytotoxicity.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , 1-Naftilamina/análogos & derivados , 1-Naftilamina/farmacologia , Alquilação/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia , Linhagem Celular , Quinase do Ponto de Checagem 2 , Humanos , Metanossulfonato de Metila/farmacologia , Naftalimidas/farmacologia , Fosforilação , Poli(ADP-Ribose) Polimerases/metabolismo , Quinolonas/farmacologiaRESUMO
Protein complexes are key molecular machines executing a variety of essential cellular processes. Despite the availability of genome-wide protein-protein interaction studies, determining the connectivity between proteins within a complex remains a major challenge. Here we demonstrate a method that is able to predict the relationship of proteins within a stable protein complex. We employed a combination of computational approaches and a systematic collection of quantitative proteomics data from wild-type and deletion strain purifications to build a quantitative deletion-interaction network map and subsequently convert the resulting data into an interdependency-interaction model of a complex. We applied this approach to a data set generated from components of the Saccharomyces cerevisiae Rpd3 histone deacetylase complexes, which consists of two distinct small and large complexes that are held together by a module consisting of Rpd3, Sin3 and Ume1. The resulting representation reveals new protein-protein interactions and new submodule relationships, providing novel information for mapping the functional organization of a complex.
Assuntos
Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteômica/métodos , Análise por Conglomerados , Deleção de Genes , Genoma , Histona Desacetilases/metabolismo , Modelos Biológicos , Modelos Estatísticos , Probabilidade , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
ATP-dependent chromatin remodeling complexes play a critical role in chromatin dynamics. A large number of in vitro studies have pointed towards nucleosome sliding as the principal remodeling outcome of SWI/SNF action, whereas few have described histone octamer transfer as the principal outcome. In contrast, recent in vivo studies have linked the activity of SWI/SNF to histone eviction in trans from gene promoters. In this study, we have found that the chimeric transcription factor Gal4-VP16 can enhance SWI/SNF histone octamer transfer activity, resulting in targeted histone eviction from a nucleosome probe. This effect is dependent on the presence of the activation domain. We observed that under conditions mimicking the in vivo relative abundance of SWI/SNF with respect to the total number of nucleosomes in a cell nucleus, the accessibility of the transcription factor binding site is the first determinant in the sequence of events leading to nucleosome remodeling. We propose a model mechanism for this transcription factor-mediated enhancement of SWI/SNF octamer transfer activity.
Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Proteínas de Ligação a DNA/metabolismo , Modelos Biológicos , Nucleossomos/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Adenosina Trifosfatases , Sequência de Bases , Montagem e Desmontagem da Cromatina/genética , Sondas de DNA/genética , Dados de Sequência Molecular , Nucleossomos/genética , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genéticaRESUMO
Yeast Rpd3 histone deacetylase plays an important role at actively transcribed genes. We characterized two distinct Rpd3 complexes, Rpd3L and Rpd3S, by MudPIT analysis. Both complexes shared a three subunit core and Rpd3L contains unique subunits consistent with being a promoter targeted corepressor. Rco1 and Eaf3 were subunits specific to Rpd3S. Mutants of RCO1 and EAF3 exhibited increased acetylation in the FLO8 and STE11 open reading frames (ORFs) and the appearance of aberrant transcripts initiating within the body of these ORFs. Mutants in the RNA polymerase II-associated SET2 histone methyltransferase also displayed these defects. Set2 functioned upstream of Rpd3S and the Eaf3 methyl-histone binding chromodomain was important for recruitment of Rpd3S and for deacetylation within the STE11 ORF. These data indicate that Pol II-associated Set2 methylates H3 providing a transcriptional memory which signals for deacetylation of ORFs by Rpd3S. This erases transcription elongation-associated acetylation to suppress intragenic transcription initiation.
Assuntos
Histona Desacetilases/metabolismo , Histonas/metabolismo , Metiltransferases/metabolismo , Fases de Leitura Aberta/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Acetilação , Acetiltransferases/análise , Acetiltransferases/genética , Acetiltransferases/metabolismo , Imunoprecipitação da Cromatina , Regulação Fúngica da Expressão Gênica , Histona Desacetilases/análise , Histona Desacetilases/genética , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinases/metabolismo , Metilação , Metiltransferases/genética , Peso Molecular , Mutação/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Subunidades Proteicas/análise , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Repressoras/análise , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/análise , Fatores de Transcrição/genéticaRESUMO
Recent studies show that active regulatory regions of the yeast genome have a lower density of nucleosomes than other regions, and that there is an inverse correlation between nucleosome density and the transcription rate of a gene. This may be the result of transcription factors displacing nucleosomes.
Assuntos
Regulação Fúngica da Expressão Gênica/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Transcrição Gênica/genética , Leveduras/genética , Genoma FúngicoRESUMO
Several yeast transcription activators have been shown to interact with and recruit histone acetyltransferase complexes to promoters in chromatin. The promiscuity of activator/HAT interactions suggests that additional factors temporally regulate these interactions in response to signaling pathways. In this study, we demonstrate that the negative regulator, Gal80, blocks interactions between the SAGA and NuA4 HAT complexes and the Gal4 activator. By contrast, Gal80 did not inhibit SAGA and NuA4 interaction with another activator Gcn4. The function of Gal80 prevented Gal4 targeting of SAGA and displaced SAGA targeted by Gal4 to a promoter within a nucleosome array. In the same set of experiments, targeting of SAGA by Gcn4 was unaffected by Gal80. These studies demonstrate that the specificity of HAT/activator interactions can be dictated by cofactors that modulate activation domain function in response to cellular signals.
Assuntos
Acetiltransferases/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ativação Enzimática , Glutationa Transferase/metabolismo , Histona Acetiltransferases , Cinética , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismoRESUMO
The functions of the SAGA and SWI/SNF complexes are interrelated and can form stable "epigenetic marks" on promoters in vivo. Here we show that stable promoter occupancy by SWI/SNF and SAGA in the absence of transcription activators requires the bromodomains of the Swi2/Snf2 and Gcn5 subunits, respectively, and nucleosome acetylation. This acetylation can be brought about by either the SAGA or NuA4 HAT complexes. The bromodomain in the Spt7 subunit of SAGA is dispensable for this activity but will anchor SAGA if it is swapped into Gcn5, indicating that specificity of bromodomain function is determined in part by the subunit it occupies. Thus, bromodomains within the catalytic subunits of SAGA and SWI/SNF anchor these complexes to acetylated promoter nucleosomes.
Assuntos
Acetiltransferases/metabolismo , Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Acetilação , Cromatina/fisiologia , Histona Acetiltransferases , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/fisiologia , Estrutura Terciária de Proteína , Transativadores/metabolismoRESUMO
Breast cancer metastasis suppressor 1 (BRMS1) suppresses metastasis of multiple human and murine cancer cells without inhibiting tumorigenicity. By yeast two-hybrid and co-immunoprecipitation, BRMS1 interacts with retinoblastoma binding protein 1 and at least seven members of the mSin3 histone deacetylase (HDAC) complex in human breast and melanoma cell lines. BRMS1 co-immunoprecipitates enzymatically active HDAC proteins and represses transcription when recruited to a Gal4 promoter in vivo. BRMS1 exists in large mSin3 complex(es) of approximately 1.4-1.9 MDa, but also forms smaller complexes with HDAC1. Deletion analyses show that the carboxyl-terminal 42 amino acids of BRMS1 are not critical for interaction with much of the mSin3 complex and that BRMS1 appears to have more than one binding point to the complex. These results further show that BRMS1 may participate in transcriptional regulation via interaction with the mSin3.HDAC complex and suggest a novel mechanism by which BRMS1 might suppress cancer metastasis.