Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(23): 15681-15687, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38813987

RESUMO

Alcohols are among the most abundant chemical feedstocks, yet they remain vastly underutilized as coupling partners in transition metal catalysis. Herein, we describe a copper metallaphotoredox manifold for the open shell deoxygenative coupling of alcohols with N-nucleophiles to forge C(sp3)-N bonds, a linkage of high value in pharmaceutical agents that is challenging to access via conventional cross-coupling techniques. N-heterocyclic carbene (NHC)-mediated conversion of alcohols into the corresponding alkyl radicals followed by copper-catalyzed C-N coupling renders this platform successful for a broad range of structurally unbiased alcohols and 18 classes of N-nucleophiles.

2.
J Org Chem ; 88(3): 1331-1338, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36650119

RESUMO

Control over the folding of oligomers, be it broad induction of a preferred helical handedness or subtle changes in the orientations of individual functional groups, is important for applications ranging from molecular recognition to long-range conformational communication. Here, we report a series of ortho-phenylene hexamers functionalized with achiral and chiral amides at their termini. NMR spectroscopy, taking advantage of 19F labeling, allows multiple conformers to be detected for each compound. In combination with CD spectroscopy and DFT calculations, specific geometries corresponding to each conformer have been identified and quantified. General conclusions about the effect of sterics and the amide linker on conformational behavior have been drawn, revealing some similarities to and key differences from previously reported imines. A model for twist sense control has been developed that is supported by computational models.

3.
J Am Chem Soc ; 141(7): 3153-3159, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30678456

RESUMO

Carbon-carbon bond-forming reductive elimination from elusive organocopper(III) complexes has been considered the key step in many copper-catalyzed and organocuprate reactions. However, organocopper(III) complexes with well-defined structures that can undergo reductive elimination are extremely rare, especially for the formation of Csp3-Csp3 bonds. We report herein a general method for the synthesis of a series of [alkyl-CuIII-(CF3)3]- complexes, the structures of which have been unequivocally characterized by NMR spectroscopy, mass spectrometry, and X-ray crystal diffraction. At elevated temperature, these complexes undergo reductive elimination following first-order kinetics, forming alkyl-CF3 products with good yields (up to 91%). Both kinetic studies and DFT calculations indicate that the reductive elimination to form Csp3-CF3 bonds proceeds through a concerted transition state, with a Δ H⧧ = 20 kcal/mol barrier.

4.
Angew Chem Int Ed Engl ; 57(39): 12675-12679, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30098083

RESUMO

Capped chelating organic molecules are presented as a design principle for tuning heterogeneous nanoparticles for electrochemical catalysis. Gold nanoparticles (AuNPs) functionalized with a chelating tetradentate porphyrin ligand show a 110-fold enhancement compared to the oleylamine-coated AuNP in current density for electrochemical reduction of CO2 to CO in water at an overpotential of 340 mV with Faradaic efficiencies (FEs) of 93 %. These catalysts also show excellent stability without deactivation (<5 % productivity loss) within 72 hours of electrolysis. DFT calculation results further confirm the chelation effect in stabilizing molecule/NP interface and tailoring catalytic activity. This general approach is thus anticipated to be complementary to current NP catalyst design approaches.

5.
Org Lett ; 24(41): 7701-7706, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36227065

RESUMO

Herein, we present a strategy for the preparation of 3'-fluorinated nucleoside analogues via the aminocatalytic, electrophilic fluorination of readily accessible and bench-stable 2'-ketonucleosides. Initially developed to facilitate the manufacture of 3'-fluoroguanosine (3'-FG)─a substructure of anticancer therapeutic MK-1454─this strategy has been extended to the synthesis of a variety of 3'-fluoronucleosides. Finally, we demonstrate the utility of the 2'-ketonucleoside synthon as a platform for further diversification and suggest that this methodology should be broadly applicable to the discovery of novel nucleoside analogues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA