RESUMO
Drug abuse has become a public health concern. The misuse of ketamine, a psychedelic substance, has increased worldwide. In addition, the co-abuse with alcohol is frequently identified among misusers. Considering that ketamine and alcohol share several pharmacological targets, we hypothesize that the consumption of both psychoactive substances may synergically intensify the toxicological consequences, both under the effect of drugs available in body systems and during withdrawal. The aim of this review is to examine the toxicological mechanisms related to ketamine plus ethanol co-abuse, as well the consequences on cardiorespiratory, digestive, urinary, and central nervous systems. Furthermore, we provide a comprehensive discussion about the probable sites of shared molecular mechanisms that may elicit additional hazardous effects. Finally, we highlight the gaps of knowledge in this area, which deserves further research.
Assuntos
Ketamina , Transtornos Relacionados ao Uso de Substâncias , Etanol , Humanos , Ketamina/efeitos adversosRESUMO
Mercury is a heavy metal found in organic and inorganic forms that represents an important toxicant with impact on human health. Mercury can be released in the environment by natural phenoms (i.e., volcanic eruptions), industrial products, waste, or anthropogenic actions (i.e., mining activity). Evidence has pointed to mercury exposure inducing neurological damages related to emotional disturbance, such as anxiety, depression, and insomnia. The mechanisms that underlie these emotional disorders remain poorly understood, although an important role of glutamatergic pathways, alterations in HPA axis, and disturbance in activity of monoamines have been suggested. Ethanol (EtOH) is a psychoactive substance consumed worldwide that induces emotional alterations that have been strongly investigated, and shares common pathophysiological mechanisms with mercury. Concomitant mercury and EtOH intoxication occur in several regions of the world, specially by communities that consume seafood and fish as the principal product of nutrition (i.e., Amazon region). Such affront appears to be more deleterious in critical periods of life, such as the prenatal and adolescence period. Thus, this review aimed to discuss the cellular and behavioral changes displayed by the mercury plus EtOH exposure during adolescence, focused on emotional disorders, to answer the question of whether mercury plus EtOH exposure intensifies depression, anxiety, and insomnia observed by the toxicants in isolation.
Assuntos
Ansiedade/induzido quimicamente , Depressão/induzido quimicamente , Etanol/toxicidade , Compostos de Metilmercúrio/toxicidade , Distúrbios do Início e da Manutenção do Sono/induzido quimicamente , Adolescente , Animais , Depressão/psicologia , Exposição Dietética , Exposição Ambiental , Feminino , Humanos , GravidezRESUMO
Drug abuse is a global public health problem among adolescents, with alcohol often used in association with other psychotropic drugs, such as ketamine. Considering the scarcity of evidence, this study aimed to investigate emotional behavioral effects induced by ethanol plus ketamine co-abuse, as well as oxidative biochemistry, and neurotrophic mediator in the prefrontal cortex and hippocampus in the early withdrawal of adolescent female rats. Animals were divided into control, ethanol, ketamine, and ethanol plus ketamine groups. The protocol administration was performed for 3 consecutive days (binge-like pattern). Behavioral assays of open field, elevated plus maze, and forced swim test were performed. After that, the prefrontal cortex and hippocampus were collected to evaluate oxidative biochemistry (reactive oxygen species-ROS; Antioxidant capacity against peroxyl radicals-ACAP; and lipid peroxidation). We found that isolated or combined ethanol and ketamine exposure displayed anxiety- and depressive-like profile, in a non-synergistically manner during early withdrawal. However, oxidative damage was aggravated in the co-administered animals than in isolated exposed subjects. We concluded that ethanol plus ketamine co-abuse may intensify oxidative damage in the hippocampus and prefrontal cortex in the early withdrawal of adolescent female rats, which was not reflected in the emotional behavioral phenotype. DATA AVAILABILITY STATEMENT: The datasets used and/or analyzed during the current investigation are available upon reasonable request from the corresponding author.
Assuntos
Alcoolismo , Ketamina , Ratos , Feminino , Animais , Ketamina/farmacologia , Etanol/farmacologia , Estresse Oxidativo , Córtex Pré-Frontal , AnsiedadeRESUMO
Binge drinking intake is the most common pattern of ethanol consumption by adolescents, which elicits emotional disturbances, mainly anxiety and depressive symptoms, as well as cognitive alterations. Ethanol exposure may act on the adenosine neuromodulation system by increasing adenosine levels, consequently increasing the activation of adenosine receptors in the brain. The adenosine modulation system is involved in the control of mood and memory behavior. However, there is a gap in the knowledge about the exact mechanisms related to ethanol exposure's hazardous effects on the immature brain (i.e., during adolescence) and the role of the adenosine system thereupon. The present review attempts to provide a comprehensive picture of the role of the adenosinergic system on emotional and cognitive disturbances induced by ethanol during adolescence, exploring the potential benefits of caffeine administration in view of its action as a non-selective antagonist of adenosine receptors.
RESUMO
Alcohol consumption is spread worldwide and can lead to an abuse profile associated with severe health problems. Adolescents are more susceptible to addiction and usually consume ethanol in a binge drinking pattern. This form of consumption can lead to cognitive and emotional disorders, however scarce studies have focused on long-term hazardous effects following withdrawal periods after binge drinking in adolescents. Thus, the present study aims at investigating whether behavioral and cognitive changes persist until mid and late adulthood. Female Wistar rats (9-10 animals/group) received intragastric administration of four cycles of ethanol binge-like pattern (3.0 g/kg/day, 20% w/v; 3 days-on/4 days-off) from 35th to 58th days old, followed withdrawal checkpoints 1 day, 30 days, and 60 days. At each checkpoint period, behavioral tests of open field, object recognition test, elevated plus maze, and forced swimming test were performed, and blood and hippocampus were collected for oxidative biochemistry and brain-derived neurotrophic factor (BDNF) levels analysis, respectively. The results demonstrated that adolescent rats exposed to binge drinking displayed anxiogenic- and depressive-like phenotype in early and midadulthood, however, anxiety-like profile persisted until late adulthood. Similarly, short-term memory was impaired in all withdrawal periods analysed, including late adult life. These behavioral data were associated with oxidative damage in midadulthood but not BDNF alterations. Taken together, the present work highlights the long-lasting emotional and cognitive alterations induced by ethanol binge drinking during adolescence, even after a long period of abstinence, which might impact adult life.
Assuntos
Consumo Excessivo de Bebidas Alcoólicas , Etanol , Animais , Ratos , Feminino , Etanol/farmacologia , Ratos Wistar , Consumo de Bebidas Alcoólicas , HipocampoRESUMO
Ketamine, also called 'K-powder' by abusers, an analog of phencyclidine, primarily acts as an antagonist of N-methyl-D-aspartic acid (NMDA) receptors, therapeutically used as an anesthetic agent. Ketamine also stimulates the limbic system, inducing hallucinations and dissociative effects. At sub-anesthetic doses, ketamine also displays hallucinatory and dissociative properties, but not loss of consciousness. These behavioral consequences have elicited its recreational use worldwide, mainly at rave parties. Ketamine is generally a drug of choice among teenagers and young adults; however, the harmful consequences of its recreational use on adolescent central nervous systems are poorly explored. Thus, the aim of the present study was to characterize the behavioral and biochemical consequences induced by one binge-like cycle of ketamine during the early withdrawal period in adolescent female rats. Adolescent female Wistar rats (n = 20) received intraperitoneally administered ketamine (10 mg/kg/day) for 3 consecutive days. Twenty-four hours after the last administration of ketamine, animals were submitted to behavioral tests in an open field, elevated plus-maze, and forced swimming test. Then, animals were intranasally anesthetized with 2% isoflurane and euthanized to collect prefrontal cortex and hippocampus to assess lipid peroxidation, antioxidant capacity against peroxyl radicals, reactive oxygen species, reduced glutathione, and brain-derived neurotrophic factor (BDNF) levels. Our results found that 24 h after recreational ketamine use, emotional behavior disabilities, such as anxiety- and depression-like profiles, were detected. In addition, spontaneous ambulation was reduced. These negative behavioral phenotypes were associated with evidence of oxidative stress on the prefrontal cortex and hippocampus.