RESUMO
The anaerobic threshold (AnT) seems to be not only a physiologic boundary but also a transition after which swimmers technique changes, modifying their biomechanical behaviour. We expanded the AnT concept to a biophysical construct in the four conventional swimming techniques. Seventy-two elite swimmers performed a 5×200 m incremental protocol in their preferred swimming technique (with a 0.05 m·s-1 increase and a 30 s interval between steps). A capillary blood samples were collected from the fingertip and stroke rate (SR) and length (SL) determined for the assessment of [La], SR and SL vs. velocity inflexion points (using the interception of a pair of linear and exponential regression curves). The [La] values at the AnT were 3.3±1.0, 3.9±1.1, 2.9±1 .34 and 4.5±1.4 mmol·l-1 (mean±SD) for front crawl, backstroke, breaststroke and butterfly, and its corresponding velocity correlated highly with those at SR and SL inflection points (r=0.91-0.99, p<0.001). The agreement analyses confirmed that AnT represents a biophysical boundary in the four competitive swimming techniques and can be determined individually using [La] and/or SR/SL. Blood lactate increase speed can help characterise swimmers' anaerobic behaviour after AnT and between competitive swimming techniques.
Assuntos
Limiar Anaeróbio/fisiologia , Natação/fisiologia , Adolescente , Fenômenos Biomecânicos , Comportamento Competitivo/fisiologia , Feminino , Humanos , Ácido Láctico/sangue , Extremidade Inferior/fisiologia , Masculino , Condicionamento Físico Humano , Análise e Desempenho de Tarefas , Extremidade Superior/fisiologia , Adulto JovemRESUMO
The current study aimed to longitudinally evaluate anthropometric, physiological, and biomechanical variables related to middle-distance performance during a 45-week swimming training season. Thirty-four swimmers (age: 12.07 ± 1.14 years) performed a maximum of 400 m front crawl at the beginning (T1) and finish of the first macrocycle (T2, 15 weeks) and the finish of the second (T3, 18 weeks) and third macrocycles (T4, 12 weeks). Time-related variables, stroke rate (SR), stroke length (SL), and stroke index (SI) were recorded during the test, and blood lactate ([La]) and glucose ([Glu]) concentrations were measured post-exercise. The time of the 400 m effort decreased after each macrocycle (T2 vs. T1, 7.8 ± 5.6%; T3 vs. T2, 3.7 ± 3.1%; T4 vs. T3, 3.8 ± 3.4%; p < 0.01). Four hundred meter speed changes between T1 and T2 were positively related to variations in [La], [Glu], SL, and SI (r = 0.36-0.60, p < 0.05). Changes between T2 and T3 were related to SI only (r = 0.5, p < 0.05), and modifications between T3 and T4 were associated with SL and SI variations (r = 0.34 and 0.65, p < 0.05). These results indicate that a well-structured year plan including three macrocycles leads to a significant age-group swimming performance improvement, mostly connected with an increase in technical proficiency.