Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(40): 27380-27393, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37792036

RESUMO

The biradicaloid character of different types of polycyclic aromatic hydrocarbons (PAHs) based on small band gaps is an important descriptor to assess their opto-electronic properties. In this work, the unpaired electron densities and numbers of unpaired electrons (NU values) calculated at the high-level multireference averaged quadratic coupled-cluster (MR-AQCC) method are used to develop a test set to assess the capabilities of different biradical descriptors based on density functional theory. A benchmark collection of 29 different compounds has been selected. The DFT descriptors contain primarily the fractional occupation number weighted electron density (FOD) based on simplified thermally-assisted-occupation density functional theory (TAO-DFT) calculations, but the singlet-triplet energy difference and other descriptors denoted as y0 and nLUNO have been considered as well. After adjustment of the literature-recommended finite temperatures, a very good, detailed agreement between unpaired density and FOD analysis is observed which is also manifested in excellent statistical correlations. The other two descriptors also show good correlations even though the absolute scaling is not satisfactory. A new linear fit of FOD data to the MR-AQCC reference values leads to an improved regression relation for determining the recommended finite temperature value in dependence of the Hartree-Fock exchange. This provides the basis for fast and reliable assessment of the biradical character of many classes of PAHs without the need for performing computationally extended MR calculations.

2.
J Phys Chem A ; 127(20): 4440-4454, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37166124

RESUMO

A number of conjugated molecules are designed with extremely long single C-C bonds beyond 2.0 Å. Some of the investigated molecules are based on analogues to the recently discovered molecule by Kubo et al. These bonds are analyzed by a variety of indices in addition to their equilibrium bond length including the Wiberg bond index, bond dissociation energy (BDE), and measures of diradicaloid character. All unrestricted DFT calculations indicate no diradical character supported by high-level multireference calculations. Finally, NFOD was computed through fractional orbital density (FOD) calculations and used to compare relative differences of diradicaloid character across twisted molecules without central C-C bonding and those with extremely elongated C-C bonds using a comparison with the C-C bond breaking in ethane. No example of direct C-C bonds beyond 2.4 Å are seen in the computational modeling; however, extremely stretched C-C bonds in the vicinity of 2.2 Å are predicted to be achievable with a BDE of 15-25 kcal mol-1.

3.
J Comput Chem ; 43(22): 1484-1494, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35731622

RESUMO

In the present study, the differential scattering cross-sections, depolarization ratios and Raman shifts of small molecular systems are obtained from configuration iteration wave functions of vibrational self-consistent field (VSCF) states. The transition polarizabilities were modeled using the Placzek approximation, neglecting those contributions not arising from the electric dipole mechanism. This theoretical approach is considered a good approximation for samples that absorb in the UV range if the excitation radiation falls in the visible region, as is the case of the molecules selected for the present study, namely: water, methane, and acetylene. Potential energy and electronic polarizability surfaces are calculated by the CCSD(T) and CC3 methods with aug-cc-p(C)V(T,Q,5)Z basis sets. The vibrational Hamiltonian includes the vibrational angular momentum contribution of the Watson kinetic energy operator. As expected, due to the variational nature of the VSCF and vibrational configuration interaction (VCI) methods, the Raman transition wavenumbers are substantially improved over the harmonic predictions. Surprisingly, the scattering cross-sections obtained using the harmonic approximation or the VSCF method better agrees with the experimental values than those cross-sections predicted using VCI wave functions. The more significant deviations of the VCI results from the experimental reference may be related to the significant uncertainties of the measured cross-sections. Still, it may also indicate that the VCI Raman transition moments may require a more accurate description of the electronic polarizability surface. Finally, the depolarization ratios calculated for H2 O and C2 D2 using harmonic and VCI wave functions have similar accuracy, whereas, for C2 H2 and C2 HD, the VCI results are more accurate.


Assuntos
Teoria Quântica , Análise Espectral Raman , Vibração , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA