Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 12(7): 652-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23584141

RESUMO

In multilayer white organic light-emitting diodes the electronic processes in the various layers--injection and motion of charges as well as generation, diffusion and radiative decay of excitons--should be concerted such that efficient, stable and colour-balanced electroluminescence can occur. Here we show that it is feasible to carry out Monte Carlo simulations including all of these molecular-scale processes for a hybrid multilayer organic light-emitting diode combining red and green phosphorescent layers with a blue fluorescent layer. The simulated current density and emission profile are shown to agree well with experiment. The experimental emission profile was obtained with nanometre resolution from the measured angle- and polarization-dependent emission spectra. The simulations elucidate the crucial role of exciton transfer from green to red and the efficiency loss due to excitons generated in the interlayer between the green and blue layers. The perpendicular and lateral confinement of the exciton generation to regions of molecular-scale dimensions revealed by this study demonstrate the necessity of molecular-scale instead of conventional continuum simulation.

2.
Bioconjug Chem ; 24(7): 1210-7, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23725393

RESUMO

One of the challenges of pretargeted radioimmunotherapy, which centers on the capture of a radiolabeled probe by a preinjected tumor-bound antibody, is the potential immunogenicity of biological capturing systems. A bioorthogonal chemical approach may circumvent this drawback, but effective in vivo chemistry in mice, larger animals, and eventually humans, requires very high reagent reactivity, sufficient stability, and retained selectivity. We report here that the reactivity of the fastest bioorthogonal reaction, the inverse-electron-demand-Diels-Alder cycloaddition between a tetrazine probe and a trans-cyclooctene-tagged antibody, can be increased 10-fold (k2 = 2.7 × 10(5) M(-1) s(-1)) via the trans-cyclooctene, approaching the speed of biological interactions, while also increasing its stability. This was enabled by the finding that the trans-cyclooctene tag is probably deactivated through isomerization to the unreactive cis-cyclooctene isomer by interactions with copper-containing proteins, and that increasing the steric hindrance on the tag can impede this process. Next, we found that the higher reactivity of axial vs equatorial linked TCO can be augmented by the choice of linker. The new, stabilized, and more reactive tag allowed for improved tumor-to-nontumor ratios in pretargeted tumor-bearing mice.


Assuntos
Ciclo-Octanos/química , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Sondas Moleculares , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X , Transplante Heterólogo
3.
Chemphyschem ; 12(18): 3619-23, 2011 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-22025448

RESUMO

A novel system for the modulation of amplified emission based on a polyfluorene/diarylethene (namely F8BT/DTP) blend is shown. The high sensitivity of amplified spontaneous emission (ASE) is exploited to achieve efficient emission modulation with a low-intensity control signal. Modulation is then characterized by photoluminescence (PL) lifetime measurements, photocurrent experiments, and density functional theory calculations. This system can also act as a photocurrent switch based on the same principle. This technique may represent a useful tool for fluorescence quenching and sensing as well as find application in organic photonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA