Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38831121

RESUMO

Once considered a tissue culture-specific phenomenon, cellular senescence has now been linked to various biological processes with both beneficial and detrimental roles in humans, rodents and other species. Much of our understanding of senescent cell biology still originates from tissue culture studies, where each cell in the culture is driven to an irreversible cell cycle arrest. By contrast, in tissues, these cells are relatively rare and difficult to characterize, and it is now established that fully differentiated, postmitotic cells can also acquire a senescence phenotype. The SenNet Biomarkers Working Group was formed to provide recommendations for the use of cellular senescence markers to identify and characterize senescent cells in tissues. Here, we provide recommendations for detecting senescent cells in different tissues based on a comprehensive analysis of existing literature reporting senescence markers in 14 tissues in mice and humans. We discuss some of the recent advances in detecting and characterizing cellular senescence, including molecular senescence signatures and morphological features, and the use of circulating markers. We aim for this work to be a valuable resource for both seasoned investigators in senescence-related studies and newcomers to the field.

2.
Am J Physiol Lung Cell Mol Physiol ; 323(6): L685-L697, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223640

RESUMO

Cellular senescence is emerging as a driver of idiopathic pulmonary fibrosis (IPF), a progressive and fatal disease with limited effective therapies. The senescence-associated secretory phenotype (SASP), involving the release of inflammatory cytokines and profibrotic growth factors by senescent cells, is thought to be a product of multiple cell types in IPF, including lung fibroblasts. NF-κB is a master regulator of the SASP, and its activity depends on the phosphorylation of p65/RelA. The purpose of this study was to assess the role of Pim-1 kinase as a driver of NF-κB-induced production of inflammatory cytokines from low-passage IPF fibroblast cultures displaying markers of senescence. Our results demonstrate that Pim-1 kinase phosphorylates p65/RelA, activating NF-κB activity and enhancing IL-6 production, which in turn amplifies the expression of PIM1, generating a positive feedback loop. In addition, targeting Pim-1 kinase with a small molecule inhibitor dramatically inhibited the expression of a broad array of cytokines and chemokines in IPF-derived fibroblasts. Furthermore, we provide evidence that Pim-1 overexpression in low-passage human lung fibroblasts is sufficient to drive premature senescence, in vitro. These findings highlight the therapeutic potential of targeting Pim-1 kinase to reprogram the secretome of senescent fibroblasts and halt IPF progression.


Assuntos
Fibrose Pulmonar Idiopática , Pneumonia , Humanos , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/farmacologia , NF-kappa B/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Senescência Celular , Pulmão/metabolismo , Pneumonia/metabolismo , Citocinas/metabolismo
3.
J Physiol ; 599(7): 2103-2123, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33569781

RESUMO

KEY POINTS: Rat somatosensory neurons express a junctional protein, junctophilin-4 (JPH4) JPH4 is necessary for the formation of store operated Ca2+ entry (SOCE) complex at the junctions between plasma membrane and endoplasmic reticulum in these neurons. Knockdown of JPH4 impairs endoplasmic reticulum Ca2+ store refill and junctional Ca2+ signalling in sensory neurons. In vivo knockdown of JPH4 in the dorsal root ganglion (DRG) sensory neurons significantly attenuated experimentally induced inflammatory pain in rats. Junctional nanodomain Ca2+ signalling maintained by JPH4 is an important contributor to the inflammatory pain mechanisms. ABSTRACT: Junctions of endoplasmic reticulum and plasma membrane (ER-PM junctions) form signalling nanodomains in eukaryotic cells. ER-PM junctions are present in peripheral sensory neurons and are important for the fidelity of G protein coupled receptor (GPCR) signalling. Yet little is known about the assembly, maintenance and physiological role of these junctions in somatosensory transduction. Using fluorescence imaging, proximity ligation, super-resolution microscopy, in vitro and in vivo gene knockdown we demonstrate that a member of the junctophilin protein family, junctophilin-4 (JPH4), is necessary for the formation of store operated Ca2+ entry (SOCE) complex at the ER-PM junctions in rat somatosensory neurons. Thus we show that JPH4 localises to the ER-PM junctional areas and co-clusters with SOCE proteins STIM1 and Orai1 upon ER Ca2+ store depletion. Knockdown of JPH4 impairs SOCE and ER Ca2+ store refill in sensory neurons. Furthermore, we demonstrate a key role of the JPH4 and junctional nanodomain Ca2+ signalling in the pain-like response induced by the inflammatory mediator bradykinin. Indeed, an in vivo knockdown of JPH4 in the dorsal root ganglion (DRG) sensory neurons significantly shortened the duration of nocifensive behaviour induced by hindpaw injection of bradykinin in rats. Since the ER supplies Ca2+ for the excitatory action of multiple inflammatory mediators, we suggest that junctional nanodomain Ca2+ signalling maintained by JPH4 is an important contributor to the inflammatory pain mechanisms.


Assuntos
Sinalização do Cálcio , Cálcio , Animais , Cálcio/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana , Proteína ORAI1 , Ratos , Células Receptoras Sensoriais/metabolismo , Molécula 1 de Interação Estromal/metabolismo
4.
J Biol Chem ; 295(23): 7958-7969, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32341072

RESUMO

The plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) regulates the activity of diverse ion channels to include the epithelial Na+ channel ENaC. Whether PIP2 regulation of ENaC is due to a direct phospholipid-protein interaction, remains obscure. To date, possible interaction of PIP2 with ENaC primarily has been tested indirectly through assays of channel function. A fragment-based biochemical analysis approach is used here to directly quantify possible PIP2-ENaC interactions. We find using the CIBN-CRY2 optogenetic dimerization system that the phosphoryl group positioned at carbon 5 of PIP2 is necessary for interaction with ENaC. Previous studies have implicated conserved basic residues in the cytosolic portions of ß- and γ-ENaC subunits as being important for PIP2-ENaC interactions. To test this, we used synthetic peptides of these regions of ß- and γ-ENaC. Steady-state intrinsic fluorescence spectroscopy demonstrated that phosphoinositides change the local conformation of the N terminus of ß-ENaC, and two sites of γ-ENaC adjacent to the plasma membrane, suggesting direct interactions of PIP2 with these three regions. Microscale thermophoresis elaborated PIP2 interactions with the N termini of ß- (Kd ∼5.2 µm) and γ-ENaC (Kd ∼13 µm). A weaker interaction site within the carboxyl terminus of γ-ENaC (Kd ∼800 µm) was also observed. These results support that PIP2 regulates ENaC activity by directly interacting with at least three distinct regions within the cytoplasmic domains of the channel that contain conserved basic residues. These interactions are probably electrostatic in nature, and are likely to bear a key structural role in support of channel activity.


Assuntos
Canais Epiteliais de Sódio/química , Canais Epiteliais de Sódio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sítios de Ligação , Células HEK293 , Humanos , Imagem Óptica , Espectrometria de Fluorescência
5.
J Neurosci ; 39(9): 1566-1587, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30593498

RESUMO

KCNQ (Kv7, "M-type") K+ channels and TRPC (transient receptor potential, "canonical") cation channels are coupled to neuronal discharge properties and are regulated via Gq/11-protein-mediated signals. Stimulation of Gq/11-coupled receptors both consumes phosphatidylinositol 4,5-bisphosphate (PIP2) via phosphalipase Cß hydrolysis and stimulates PIP2 synthesis via rises in Ca2+i and other signals. Using brain-slice electrophysiology and Ca2+ imaging from male and female mice, we characterized threshold K+ currents in dentate gyrus granule cells (DGGCs) and CA1 pyramidal cells, the effects of Gq/11-coupled muscarinic M1 acetylcholine (M1R) stimulation on M current and on neuronal discharge properties, and elucidated the intracellular signaling mechanisms involved. We observed disparate signaling cascades between DGGCs and CA1 neurons. DGGCs displayed M1R enhancement of M-current, rather than suppression, due to stimulation of PIP2 synthesis, which was paralleled by increased PIP2-gated G-protein coupled inwardly rectifying K+ currents as well. Deficiency of KCNQ2-containing M-channels ablated the M1R-induced enhancement of M-current in DGGCs. Simultaneously, M1R stimulation in DGGCs induced robust increases in [Ca2+]i, mostly due to TRPC currents, consistent with, and contributing to, neuronal depolarization and hyperexcitability. CA1 neurons did not display such multimodal signaling, but rather M current was suppressed by M1R stimulation in these cells, similar to the previously described actions of M1R stimulation on M-current in peripheral ganglia that mostly involves PIP2 depletion. Therefore, these results point to a pleiotropic network of cholinergic signals that direct cell-type-specific, precise control of hippocampal function with strong implications for hyperexcitability and epilepsy.SIGNIFICANCE STATEMENT At the neuronal membrane, protein signaling cascades consisting of ion channels and metabotropic receptors govern the electrical properties and neurotransmission of neuronal networks. Muscarinic acetylcholine receptors are G-protein-coupled metabotropic receptors that control the excitability of neurons through regulating ion channels, intracellular Ca2+ signals, and other second-messenger cascades. We have illuminated previously unknown actions of muscarinic stimulation on the excitability of hippocampal principal neurons that include M channels, TRPC (transient receptor potential, "canonical") cation channels, and powerful regulation of lipid metabolism. Our results show that these signaling pathways, and mechanisms of excitability, are starkly distinct between peripheral ganglia and brain, and even between different principal neurons in the hippocampus.


Assuntos
Potenciais de Ação , Região CA1 Hipocampal/metabolismo , Giro Denteado/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Receptores Muscarínicos/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Giro Denteado/citologia , Giro Denteado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/metabolismo , Células Piramidais/fisiologia
6.
Hippocampus ; 30(5): 435-455, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31621989

RESUMO

M-type (KCNQ2/3) K+ channels play dominant roles in regulation of active and passive neuronal discharge properties such as resting membrane potential, spike-frequency adaptation, and hyper-excitatory states. However, plasticity of M-channel expression and function in nongenetic forms of epileptogenesis are still not well understood. Using transgenic mice with an EGFP reporter to detect expression maps of KCNQ2 mRNA, we assayed hyperexcitability-induced alterations in KCNQ2 transcription across subregions of the hippocampus. Pilocarpine and pentylenetetrazol chemoconvulsant models of seizure induction were used, and brain tissue examined 48 hr later. We observed increases in KCNQ2 mRNA in CA1 and CA3 pyramidal neurons after chemoconvulsant-induced hyperexcitability at 48 hr, but no significant change was observed in dentate gyrus (DG) granule cells. Using chromogenic in situ hybridization assays, changes to KCNQ3 transcription were not detected after hyper-excitation challenge, but the results for KCNQ2 paralleled those using the KCNQ2-mRNA reporter mice. In mice 7 days after pilocarpine challenge, levels of KCNQ2 mRNA were similar in all regions to those from control mice. In brain-slice electrophysiology recordings, CA1 pyramidal neurons demonstrated increased M-current amplitudes 48 hr after hyperexcitability; however, there were no significant changes to DG granule cell M-current amplitude. Traumatic brain injury induced significantly greater KCNQ2 expression in the hippocampal hemisphere that was ipsilateral to the trauma. In vivo, after a secondary challenge with subconvulsant dose of pentylenetetrazole, control mice were susceptible to tonic-clonic seizures, whereas mice administered the M-channel opener retigabine were protected from such seizures. This study demonstrates that increased excitatory activity promotes KCNQ2 upregulation in the hippocampus in a cell-type specific manner. Such novel ion channel expressional plasticity may serve as a compensatory mechanism after a hyperexcitable event, at least in the short term. The upregulation described could be potentially leveraged in anticonvulsant enhancement of KCNQ2 channels as therapeutic target for preventing onset of epileptogenic seizures.


Assuntos
Hipocampo/metabolismo , Canal de Potássio KCNQ2/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Hipocampo/efeitos dos fármacos , Canal de Potássio KCNQ2/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Técnicas de Cultura de Órgãos , Pilocarpina/farmacologia
7.
Breast Cancer Res Treat ; 177(2): 345-355, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31230251

RESUMO

PURPOSE: Triple-negative breast cancers (TNBCs) represent a heterogeneous group of tumors. The lack of targeted therapies combined with the inherently aggressive nature of TNBCs results in a higher relapse rate and poorer overall survival. We evaluated the heterogeneity of TNBC cell lines for TRPC channel expression and sensitivity to cation-disrupting drugs. METHODS: The TRPC1/4/5 agonist englerin A was used to identify a group of TNBC cell lines sensitive to TRPC1/4/5 activation and intracellular cation disruption. Quantitative RT-PCR, the sulforhodamine B assay, pharmacological inhibition, and siRNA-mediated knockdown approaches were employed. Epifluorescence imaging was performed to measure intracellular Ca2+ and Na+ levels. Mitochondrial membrane potential changes were monitored by confocal imaging. RESULTS: BT-549 and Hs578T cells express high levels of TRPC4 and TRPC1/4, respectively, and are exquisitely, 2000- and 430-fold, more sensitive to englerin A than other TNBC cell lines. While englerin A caused a slow Na+ and nominal Ca2+ accumulation in Hs578T cells, it elicited rapid increases in cytosolic Ca2+ levels that triggered mitochondrial depolarization in BT-549 cells. Interestingly, BT-549 and Hs578T cells were also more sensitive to digoxin as compared to other TNBC cell lines. Collectively, these data reveal TRPC1/4 channels as potential biomarkers of TNBC cell lines with dysfunctional mechanisms of cation homeostasis and therefore sensitivity to cardiac glycosides. CONCLUSIONS: The sensitivity of BT-549 and Hs578T cells to englerin A and digoxin suggests a subset of TNBCs are highly susceptible to cation disruption and encourages investigation of TRPC1 and TRPC4 as potential new biomarkers of sensitivity to cardiac glycosides.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sesquiterpenos de Guaiano/farmacologia , Animais , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA Interferente Pequeno/genética , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
8.
NPJ Aging ; 10(1): 47, 2024 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-39438481

RESUMO

Age-related changes in oligodendrocyte precursor cells (OPCs) contribute to white matter dysfunction. In aged mice, we hypothesized that myelin-dense fimbria OPCs possess niche-specific properties, compared to hippocampal OPCs. Aged fimbria OPCs were fewer, larger, and localized to neighboring microglia. We identified age-increased p16/Cdkn2a-expressing OPCs enriched for senescence-related pathways and distinct senescence signatures between hippocampus and fimbria. Aged brain OPC populations differ in microenvironment properties and responses to senescence-directed intervention.

9.
Res Sq ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37961365

RESUMO

Brain white matter tracts undergo structural and functional changes linked to late-life cognitive decline, but the cellular and molecular contributions to their selective vulnerability are not well defined. In naturally aged mice, we demonstrate that senescent and disease-associated microglia (DAM) phenotypes converge in hippocampus-adjacent white matter. Through gold-standard gene expression and immunolabeling combined with high-dimensional spatial mapping, we identified microglial cell fates in aged white matter characterized by aberrant morphology, microenvironment reorganization, and expression of senescence and DAM markers, including galectin 3 (GAL3/Lgals3), B-cell lymphoma 2 (Bcl2), and cyclin dependent kinase inhibitors, including Cdkn2a/p16ink4a. Pharmacogenetic or pharmacological targeting of p16ink4a or BCL2 reduced white matter GAL3+ DAM abundance and rejuvenated microglial fimbria organization. Our results demonstrate dynamic changes in microglial identity in aged white matter that can be reverted by senotherapeutic intervention to promote homeostatic maintenance in the aged brain.

10.
Front Aging ; 3: 993658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36276605

RESUMO

Surgical parabiosis enables sharing of the circulating milieu between two organisms. This powerful model presents diverse complications based on age, strain, sex, and other experimental parameters. Here, we provide an optimized parabiosis protocol for the surgical union of two mice internally at the elbow and knee joints with continuous external joining of the skin. This protocol incorporates guidance and solutions to complications that can occur, particularly in aging studies, including non-cohesive pairing, variable anesthesia sensitivity, external and internal dehiscence, dehydration, and weight loss. We also offer a straightforward method for validating postoperative blood chimerism and confirming its time course using flow cytometry. Utilization of our optimized protocol can facilitate reproducible parabiosis experimentation to dynamically explore mechanisms of aging and rejuvenation.

11.
Nat Commun ; 13(1): 5671, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36167854

RESUMO

Cellular senescence is a plausible mediator of inflammation-related tissue dysfunction. In the aged brain, senescent cell identities and the mechanisms by which they exert adverse influence are unclear. Here we used high-dimensional molecular profiling, coupled with mechanistic experiments, to study the properties of senescent cells in the aged mouse brain. We show that senescence and inflammatory expression profiles increase with age and are brain region- and sex-specific. p16-positive myeloid cells exhibiting senescent and disease-associated activation signatures, including upregulation of chemoattractant factors, accumulate in the aged mouse brain. Senescent brain myeloid cells promote peripheral immune cell chemotaxis in vitro. Activated resident and infiltrating immune cells increase in the aged brain and are partially restored to youthful levels through p16-positive senescent cell clearance in female p16-InkAttac mice, which is associated with preservation of cognitive function. Our study reveals dynamic remodeling of the brain immune cell landscape in aging and suggests senescent cell targeting as a strategy to counter inflammatory changes and cognitive decline.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Rejuvenescimento , Envelhecimento , Animais , Encéfalo/metabolismo , Senescência Celular/fisiologia , Fatores Quimiotáticos , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Feminino , Masculino , Camundongos
12.
Front Neurosci ; 15: 681144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489621

RESUMO

We investigated the contribution of excitatory transient receptor potential canonical (TRPC) cation channels to posttraumatic hyperexcitability in the brain 7 days following controlled cortical impact model of traumatic brain injury (TBI) to the parietal cortex in male adult mice. We investigated if TRPC1/TRPC4/TRPC5 channel expression is upregulated in excitatory neurons after TBI in contribution to epileptogenic hyperexcitability in key hippocampal and cortical circuits that have substantial cholinergic innervation. This was tested by measuring TRPC1/TRPC4/TRPC5 protein and messenger RNA (mRNA) expression, assays of cholinergic function, neuronal Ca2+ imaging in brain slices, and seizure susceptibility after TBI. We found region-specific increases in expression of TRPC1, TRPC4, and TRPC5 subunits in the hippocampus and cortex following TBI. The dentate gyrus, CA3 region, and cortex all exhibited robust upregulation of TRPC4 mRNA and protein. TBI increased cFos activity in dentate gyrus granule cells (DGGCs) and layer 5 pyramidal neurons both at the time of TBI and 7 days post-TBI. DGGCs displayed greater magnitude and duration of acetylcholine-induced rises in intracellular Ca2+ in brain slices from mice subjected to TBI. The TBI mice also exhibited greater seizure susceptibility in response to pentylenetetrazol-induced kindling. Blockade of TRPC4/TRPC5 channels with M084 reduced neuronal hyperexcitation and impeded epileptogenic progression of kindling. We observed that the time-dependent upregulation of TRPC4/TRPC5-containing channels alters cholinergic responses and activity of principal neurons acting to increase proexcitatory sensitivity. The underlying mechanism includes acutely decreased acetylcholinesterase function, resulting in greater G q / 11-coupled muscarinic receptor activation of TRPC channels. Overall, our evidence suggests that TBI-induced plasticity of TRPC channels strongly contributes to overt hyperexcitability and primes the hippocampus and cortex for seizures.

13.
Front Physiol ; 11: 688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32636759

RESUMO

K v 7 ("M-type," KCNQ) K+ currents, play dominant roles in controlling neuronal excitability. They act as a "brake" against hyperexcitable states in the central and peripheral nervous systems. Pharmacological augmentation of M current has been developed for controlling epileptic seizures, although current pharmacological tools are uneven in practical usefulness. Lately, however, M-current "opener" compounds have been suggested to be efficacious in preventing brain damage after multiple types of insults/diseases, such as stroke, traumatic brain injury, drug addiction and mood disorders. In this review, we will discuss what is known to date on these efforts and identify gaps in our knowledge regarding the link between M current and therapeutic potential for these disorders. We will outline the preclinical experiments that are yet to be performed to demonstrate the likelihood of success of this approach in human trials. Finally, we also address multiple pharmacological tools available to manipulate different K v 7 subunits and the relevant evidence for translational application in the clinical use for disorders of the central nervous system and multiple types of brain insults. We feel there to be great potential for manipulation of K v 7 channels as a novel therapeutic mode of intervention in the clinic, and that the paucity of existing therapies obligates us to perform further research, so that patients can soon benefit from such therapeutic approaches.

14.
Sci Signal ; 13(629)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345727

RESUMO

ANO1 (TMEM16A) is a Ca2+-activated Cl- channel (CaCC) expressed in peripheral somatosensory neurons that are activated by painful (noxious) stimuli. These neurons also express the Ca2+-permeable channel and noxious heat sensor TRPV1, which can activate ANO1. Here, we revealed an intricate mechanism of TRPV1-ANO1 channel coupling in rat dorsal root ganglion (DRG) neurons. Simultaneous optical monitoring of CaCC activity and Ca2+ dynamics revealed that the TRPV1 ligand capsaicin activated CaCCs. However, depletion of endoplasmic reticulum (ER) Ca2+ stores reduced capsaicin-induced Ca2+ increases and CaCC activation, suggesting that ER Ca2+ release contributed to TRPV1-induced CaCC activation. ER store depletion by plasma membrane-localized TRPV1 channels was demonstrated with an ER-localized Ca2+ sensor in neurons exposed to a cell-impermeable TRPV1 ligand. Proximity ligation assays established that ANO1, TRPV1, and the IP3 receptor IP3R1 were often found in close proximity to each other. Stochastic optical reconstruction microscopy (STORM) confirmed the close association between all three channels in DRG neurons. Together, our data reveal the existence of ANO1-containing multichannel nanodomains in DRG neurons and suggest that coupling between TRPV1 and ANO1 requires ER Ca2+ release, which may be necessary to enhance ANO1 activation.


Assuntos
Anoctamina-1/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Ratos , Ratos Wistar
15.
PLoS One ; 12(11): e0188064, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29145442

RESUMO

A major challenge is to understand maladaptive changes in ion channels that sets neurons on a course towards epilepsy development. Voltage- and calcium-activated K+ (BK) channels contribute to early spike timing in neurons, and studies indicate that the BK channel plays a pathological role in increasing excitability early after a seizure. Here, we have investigated changes in BK channels and their accessory ß4 subunit (KCNMB4) in dentate gyrus (DG) granule neurons of the hippocampus, key neurons that regulate excitability of the hippocampus circuit. Two days after pilocarpine-induced seizures, we found that the predominant effect is a downregulation of the ß4 accessory subunit mRNA. Consistent with reduced expression, single channel recording and pharmacology indicate a switch in the subtype of channels expressed; from iberiotoxin-resistant, type II BK channels (BK α/ß4) that have higher channel open probability and slow gating, to iberiotoxin-sensitive type I channels (BK α alone) with low open probability and faster gating. The switch to a majority of type I channel expression following seizure activity is correlated with a loss of BK channel function on spike threshold while maintaining the channel's contribution to increased early spike frequency. Using heterozygous ß4 knockout mice, we find reduced expression is sufficient to increase seizure sensitivity. We conclude that seizure-induced downregulation of KCNMB4 is an activity dependent mechanism that increases the excitability of DG neurons. These novel findings indicate that BK channel subtypes are not only defined by cell-specific expression, but can also be plastic depending on the recent history of neuronal excitability.


Assuntos
Regulação para Baixo , Hipocampo/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Neurônios/metabolismo , Convulsões/metabolismo , Potenciais de Ação , Animais , Hipocampo/patologia , Hipocampo/fisiopatologia , Canais de Potássio Ativados por Cálcio de Condutância Alta/classificação , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Neuron ; 92(2): 461-478, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27693258

RESUMO

The fidelity of neuronal signaling requires organization of signaling molecules into macromolecular complexes, whose components are in intimate proximity. The intrinsic diffraction limit of light makes visualization of individual signaling complexes using visible light extremely difficult. However, using super-resolution stochastic optical reconstruction microscopy (STORM), we observed intimate association of individual molecules within signaling complexes containing ion channels (M-type K+, L-type Ca2+, or TRPV1 channels) and G protein-coupled receptors coupled by the scaffolding protein A-kinase-anchoring protein (AKAP)79/150. Some channels assembled as multi-channel supercomplexes. Surprisingly, we identified novel layers of interplay within macromolecular complexes containing diverse channel types at the single-complex level in sensory neurons, dependent on AKAP79/150. Electrophysiological studies revealed that such ion channels are functionally coupled as well. Our findings illustrate the novel role of AKAP79/150 as a molecular coupler of different channels that conveys crosstalk between channel activities within single microdomains in tuning the physiological response of neurons.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Canais de Cálcio Tipo L/metabolismo , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Células CHO , Canais de Cálcio Tipo L/ultraestrutura , Cricetulus , Imunofluorescência , Humanos , Canal de Potássio KCNQ2/ultraestrutura , Canal de Potássio KCNQ3/ultraestrutura , Microscopia , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Neurônios/ultraestrutura , Imagem Óptica , Receptores Acoplados a Proteínas G/ultraestrutura , Canais de Cátion TRPV/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA