Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biometeorol ; 68(3): 463-477, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38189989

RESUMO

Here, we evaluated the influence of outdoor environmental conditions (synoptic weather conditions) on human thermal discomfort in the five macro-regions of Pelotas city, located in the southernmost region of Brazil. To do this, meteorological sensors (HOBO MX2301A) were installed outside the residences to measure the air temperature, dew point temperature, and relative humidity between 18 January and 20 August 2019. Two well-established simplified biometeorological indices were examined seasonally: (i) humidex for the summer months and (ii) effective temperature as a function of wind for the autumn and winter months. Our findings showed seasonal differences related to human thermal discomfort and outdoor environmental conditions. The thermal discomfort was highest in the afternoons during the summer months and at night during the winter months. The seasonal variation in human thermal discomfort was highly associated with the meteorological conditions. In summer, the presence of the South Atlantic Subtropical Anticyclone (SASA) contributed to heat stress. The SASA combined with the continent's low humidity contributed to the perceived sensation of thermal discomfort. In the winter, thermal discomfort was associated with the decrease in air humidity caused by high atmospheric pressure systems, which led to a decrease in both air temperature and air moisture content. Our findings suggest that a better understanding of the complex interplay between outdoor environmental factors and human thermal comfort is needed in order to mitigate the negative effects of thermal discomfort.


Assuntos
Sensação Térmica , Tempo (Meteorologia) , Humanos , Brasil/epidemiologia , Umidade , Temperatura , Estações do Ano
2.
Mar Pollut Bull ; 205: 116639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38964190

RESUMO

Oil spills, detected by SAR sensors as dark areas, are highly effective marine pollutants that affect the ocean surface. These spills change the water surface tension, attenuating capillary gravitational waves and causing specular reflections. We conducted a case study in the Persian Gulf (Arabian Sea to the Strait of Hormuz), where approximately 163,900 gal of crude oil spilled in March 2017. Our study examined the relationship between oil weathering processes and extracted backscatter values using zonal slices projected over SAR-detected oil spills. Internal backscatter values ranged from -22.5 to -23.5, indicating an oil chemical binding and minimal interaction with seawater. MEDSLIK-II simulations indicated increased oil solubilization and radar attenuation rates with wind, facilitating coastal dispersion. Higher backscatter at the spill edges compared to the core reflected different stages of oil weathering. These results highlight the complex dynamics of oil spills and their environmental impact on marine ecosystems.


Assuntos
Monitoramento Ambiental , Poluição por Petróleo , Tecnologia de Sensoriamento Remoto , Água do Mar , Poluentes Químicos da Água , Poluição por Petróleo/análise , Oceano Índico , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água do Mar/química , Petróleo/análise , Modelos Teóricos
3.
Sci Rep ; 13(1): 15928, 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37741891

RESUMO

This study presents novel insight into the mechanisms of Atlantic Meridional Overturning Circulation (AMOC) reduction and its recovery under a warmer climate scenario. An one-thousand-year-long numerical simulation of a global coupled ocean-ice-atmosphere climate model, subjected to a stationary atmospheric radiative forcing, depict a coherent picture of the Arctic sea ice melting as a trigger for the initial AMOC reduction, along with decreases in the northward fluxes of salt and heat. Further atmospheric-driven ocean processes contribute to an erosion of the stable stratification of the fresher, yet colder waters in the surface layers of the North Atlantic, contributing to the recovery of a permanently altered AMOC.

4.
J Exerc Rehabil ; 14(5): 802-809, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30443526

RESUMO

The purpose of this study was to evaluate the effects of N-acetylcysteine (NAC) supplementation on cellular damage and oxidative stress indicators in volleyball athletes. Twenty male volleyball athletes at national level performed a physical training session and were divided into 2 groups, which for 7 days took the placebo substance or NAC. After 7 days the athletes repeated the same training session. In both sessions, blood samples were collected 30 min before and immediately after the training session to measure cellular damage and oxidative stress markers. The main results show that, although higher concentrations of glutathione peroxidase and superoxide dismutase were observed in post-session 1 than those in postsession 2, the other markers showed an increase in antioxidant action after supplementation of NAC, once the effect of experimental conditions (P=0.030) were observed in: time effect (P<0.001) and interaction (P=0.019) for total glutathione; time effect (P<0.001) and interaction (P<0.001) for reduced glutathione; and time effect (P<0.001) for ferric-reducing antioxidant potential. The oxidant action indicated by the protein carbonyl was higher in the placebo group than in the NAC group (P=0.028), but a time effect (P<0.001) for the thiobarbituric acid reactive substances showed lower values in presession 1 than in presession 2. For the cellular damage markers, antagonistic results between markers were found. Based in the results, the supplementation of NAC during a short period was effective in reducing oxidant action and increasing antioxidant action. However, conclusive alterations in the responses of the cellular damage markers were not obtained.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA