Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(52): e2305771, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37635107

RESUMO

Zirconium-containing metal-organic framework (MOF) with UiO-66 topology is an extremely versatile material, which finds applications beyond gas separation and catalysis. However, after more than 10 years after the first reports introducing this MOF, understanding of the molecular-level mechanism of its nucleation and growth is still lacking. By means of in situ time-resolved high-resolution mass spectrometry, Zr K-edge X-ray absorption spectroscopy, magic-angle spinning nuclear magnetic resonance spectroscopy, and X-ray diffraction it is showed that the nucleation of UiO-66 occurs via a solution-mediated hydrolysis of zirconium chloroterephthalates, whose formation appears to be autocatalytic. Zirconium-oxo nodes form directly and rapidly during the synthesis, the formation of pre-formed clusters and stable non-stoichiometric intermediates are not observed. The nuclei of UiO-66 possess identical to the crystals local environment, however, they lack long-range order, which is gained during the crystallization. Crystal growth is the rate-determining step, while fast nucleation controls the formation of the small crystals of UiO-66 with a narrow size distribution of about 200 nanometers.

2.
Inorg Chem ; 62(26): 10307-10316, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37327451

RESUMO

The benzonitrile solvate {[{Au(C6F5)2}2{Pb(terpy)}]·NCPh}n (1) (terpy = 2,2':6',2″-terpyridine) displays reversible reorientation and coordination of the benzonitrile molecule to lead upon external stimuli. High-pressure X-ray diffraction studies between 0 and 2.1 GPa reveal a 100% of conversion without loss of symmetry, which is totally reversible upon decompression. By variable-temperature X-ray diffraction studies between 100 and 285 K, a partial coordination is achieved.

3.
Proc Natl Acad Sci U S A ; 117(41): 25310-25318, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989146

RESUMO

The origin of diamonds in ureilite meteorites is a timely topic in planetary geology as recent studies have proposed their formation at static pressures >20 GPa in a large planetary body, like diamonds formed deep within Earth's mantle. We investigated fragments of three diamond-bearing ureilites (two from the Almahata Sitta polymict ureilite and one from the NWA 7983 main group ureilite). In NWA 7983 we found an intimate association of large monocrystalline diamonds (up to at least 100 µm), nanodiamonds, nanographite, and nanometric grains of metallic iron, cohenite, troilite, and likely schreibersite. The diamonds show a striking texture pseudomorphing inferred original graphite laths. The silicates in NWA 7983 record a high degree of shock metamorphism. The coexistence of large monocrystalline diamonds and nanodiamonds in a highly shocked ureilite can be explained by catalyzed transformation from graphite during an impact shock event characterized by peak pressures possibly as low as 15 GPa for relatively long duration (on the order of 4 to 5 s). The formation of "large" (as opposed to nano) diamond crystals could have been enhanced by the catalytic effect of metallic Fe-Ni-C liquid coexisting with graphite during this shock event. We found no evidence that formation of micrometer(s)-sized diamonds or associated Fe-S-P phases in ureilites require high static pressures and long growth times, which makes it unlikely that any of the diamonds in ureilites formed in bodies as large as Mars or Mercury.

4.
J Am Chem Soc ; 144(11): 5180-5189, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35255213

RESUMO

Highly reflective crystals of the nucleotide base guanine are widely distributed in animal coloration and visual systems. Organisms precisely control the morphology and organization of the crystals to optimize different optical effects, but little is known about how this is achieved. Here we examine a fundamental question that has remained unanswered after over 100 years of research on guanine: what are the crystals made of? Using solution-state and solid-state chemical techniques coupled with structural analysis by powder XRD and solid-state NMR, we compare the purine compositions and the structures of seven biogenic guanine crystals with different crystal morphologies, testing the hypothesis that intracrystalline dopants influence the crystal shape. We find that biogenic "guanine" crystals are not pure crystals but molecular alloys (aka solid solutions and mixed crystals) of guanine, hypoxanthine, and sometimes xanthine. Guanine host crystals occlude homogeneous mixtures of other purines, sometimes in remarkably large amounts (up to 20% of hypoxanthine), without significantly altering the crystal structure of the guanine host. We find no correlation between the biogenic crystal morphology and dopant content and conclude that dopants do not dictate the crystal morphology of the guanine host. The ability of guanine crystals to host other molecules enables animals to build physiologically "cheaper" crystals from mixtures of metabolically available purines, without impeding optical functionality. The exceptional levels of doping in biogenic guanine offer inspiration for the design of mixed molecular crystals that incorporate multiple functionalities in a single material.


Assuntos
Guanina , Purinas , Animais , Guanina/metabolismo , Hipoxantina/metabolismo , Purinas/química , Xantina/metabolismo
5.
J Am Chem Soc ; 144(30): 13729-13739, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35876689

RESUMO

We are currently witnessing the dawn of hydrogen (H2) economy, where H2 will soon become a primary fuel for heating, transportation, and long-distance and long-term energy storage. Among diverse possibilities, H2 can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel via adsorption onto porous materials. Metal-organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H2 storage densities on both a volumetric and gravimetric basis. However, a critical bottleneck for the use of H2 as a transportation fuel has been the lack of densification methods capable of shaping MOFs into practical formulations while maintaining their adsorptive performance. Here, we report a high-throughput screening and deep analysis of a database of MOFs to find optimal materials, followed by the synthesis, characterization, and performance evaluation of an optimal monolithic MOF (monoMOF) for H2 storage. After densification, this monoMOF stores 46 g L-1 H2 at 50 bar and 77 K and delivers 41 and 42 g L-1 H2 at operating pressures of 25 and 50 bar, respectively, when deployed in a combined temperature-pressure (25-50 bar/77 K → 5 bar/160 K) swing gas delivery system. This performance represents up to an 80% reduction in the operating pressure requirements for delivering H2 gas when compared with benchmark materials and an 83% reduction compared to compressed H2 gas. Our findings represent a substantial step forward in the application of high-density materials for volumetric H2 storage applications.

6.
Chemistry ; 27(19): 5944-5955, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33319376

RESUMO

The mechanism for the mechanochemical synthesis of (C(NH2 )3 )3 PbI5 3 and (C(NH2 )3 )4 PbI6 4 and their conversion into each other is presented. We investigated the synthesis of 3 at different frequencies and energies using in situ powder X-ray diffraction. By splitting the reaction into single parts we could prove that the formation of 3 is simply dependent on the energy and mixing speed. The nucleation of 4 instead is slightly negative dependent on the energy but dependent on the mixing speed, while its growth is mostly independent of any influence. We were able to influence the reaction pathways by seeding the mixture with a small amount of powdery 4. The formation of 4 is very likely an auto-catalytic process. 3 instead is metastable. It can be stabilized by energy, which beside mechanochemistry can also be achieved by temperature. The results showcases the complex nature of mechanochemical reactions.

7.
Inorg Chem ; 59(14): 10091-10098, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32615765

RESUMO

We report the pressure-induced structural and magnetic changes in [CuCl(pyz)2](BF4) (pyz = pyrazine) and [CuBr(pyz)2](BF4), two members of a family of three-dimensional coordination polymers based on square mesh {[Cu(pyz)2]2+}n layers. High-pressure X-ray diffraction and density functional theory calculations have been used to investigate the structure-magnetic property relationship. Although structurally robust and almost undeformed within a large pressure range, the {[Cu(pyz)2]2+}n network can be electronically modified by adjusting the interaction of the apical linkers interconnecting the layers, which has strong implications for the magnetic properties. It is then demonstrated that the degree of covalent character of the apical interaction explains the difference in magnetic exchange between the two species. We have also investigated the mechanical deformation of the network induced by nonhydrostatic compression that affects the structure depending on the crystal orientation. The obtained results suggest the existence of "Jahn-Teller frustration" triggered at the highest hydrostatic pressure limit.

8.
J Am Chem Soc ; 141(23): 9330-9337, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31117654

RESUMO

We present an in situ powder X-ray diffraction study on the phase stability and polymorphism of the metal-organic framework ZIF-4, Zn(imidazolate)2, at simultaneous high pressure and high temperature, up to 8 GPa and 600 °C. The resulting pressure-temperature phase diagram reveals four, previously unknown, high-pressure-high-temperature ZIF phases. The crystal structures of two new phases-ZIF-4-cp-II and ZIF-hPT-II-were solved by powder diffraction methods. The total energy of ZIF-4-cp-II was evaluated using density functional theory calculations and was found to lie in between that of ZIF-4 and the most thermodynamically stable polymorph, ZIF- zni. ZIF-hPT-II was found to possess a doubly interpenetrated diamondoid topology and is isostructural with previously reported Cd(Imidazolate)2 and Hg(Imidazolate)2 phases. This phase exhibited extreme resistance to both temperature and pressure. The other two new phases could be assigned with a unit cell and space group, although their structures remain unknown. The pressure-temperature phase diagram of ZIF-4 is strikingly complicated when compared with that of the previously investigated, closely related ZIF-62 and demonstrates the ability to traverse complex energy landscapes of metal-organic systems using the combined application of pressure and temperature.

9.
Phys Chem Chem Phys ; 21(23): 12389-12395, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31140490

RESUMO

We report the amorphization of three metal-organic frameworks, ZIF-4, ZIF-62, and ZIF-zni, by synchrotron X-ray radiation. Complete amorphization of these structures occurs on timescales ranging from minutes to hours. This process is non-isokinetic in all three cases, given a varying transformation rate as the transformation proceeds. The underlying mechanism bears the signature of inhomogeneous nucleation, reflected by an increasing local Avrami exponent over time. Furthermore, the amorphization rate accelerates with increasing temperature, even far below the usual thermal stability limit of each crystalline phase. These results not only have important implications for interpretation of X-ray synchrotron studies on the stability of metal-organic frameworks, they also shed light on the rarely-discussed and generally unpredictable experimental problem of beam damage in organic and inorganic compounds in general.

10.
Angew Chem Int Ed Engl ; 58(20): 6625-6629, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30844119

RESUMO

We report the high-pressure structural characterization of an organic polyiodide salt in which a progressive addition of iodine to triiodide groups occurs. Compression leads to the initial formation of discrete heptaiodide units, followed by polymerization to a 3D anionic network. Although the structural changes appear to be continuous, the insulating salt becomes a semiconducting polymer above 10 GPa. The features of the pre-reactive state and the polymerized state are revealed by analysis of the computed electron and energy densities. The unusually high electrical conductivity can be explained with the formation of new bonds.

11.
J Comput Chem ; 39(10): 581-586, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29164647

RESUMO

The accurate electron density distribution in Pd(Neoc)Cl2 (CO) (Neoc = 2,9-dimethyl-1,10-phenanthroline) was measured and calculated to investigate the chemical bonding features, the electrostatic forces and the polarizable bonds in this complex, which is a prototype of the proposed intermediate in the catalytic carbonylation of amines and nitroarenes. The quantum theory of atoms in molecules enables to investigate the nature of the elusive fifth coordination in the complex, which is approximately intermediate between a bypiramid penta-coordination and a square planar tetra-coordination. The analysis of the electrostatic potential and of the distributed atomic polarizabilities enables to address the sites that are more prompt to react, in particular in the context of the catalytic cycle. © 2017 Wiley Periodicals, Inc.

12.
Chemistry ; 24(67): 17701-17711, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30230654

RESUMO

The in situ investigations of the mechanochemical synthesis of four hybrid organic-inorganic lead(II) iodides with the formula (C(NH2 )3 )n PbI2+n (n=1, 2, 3, and 4) are presented. Synchrotron X-ray diffraction data show that the four guanidinium lead(II) iodides easily convert into each other. Although the end product is dictated by the initial stoichiometry, complex pathways were found with different behaviors of the compounds in terms of nucleation, growth, and intermediate formation. This appears to be linked to the respective structural features of the different compounds, especially the connectivity of the inorganic framework and the strength of ionic interactions. High-temperature studies were conducted on compounds 1, 3, and 4 to reveal the new phases 1-II, 3-II, and 3-III. Unknown structures were solved from single-crystal analysis and powder X-ray diffraction.

13.
Chemistry ; 24(21): 5500-5505, 2018 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-29470855

RESUMO

Single-component conductors based on neutral organic radicals have received a lot of attention due to the possibility that the unpaired electron can serve as a charge carrier without the need of a previous doping process. Although most of these systems are based on delocalized planar radicals, we present here a nonplanar and spin localized radical based on a tetrathiafulvalene (TTF) moiety, linked to a perchlorotriphenylmethyl (PTM) radical by a conjugated bridge, which exhibits a semiconducting behavior upon application of high pressure. The synthesis, electronic properties, and crystal structure of this neutral radical TTF-Ph-PTM derivative (1) are reported and implications of its crystalline structure on its electrical properties are discussed. On the other hand, the non-radical derivative (2), which is isostructural with the radical 1, shows an insulating behavior at all measured pressures. The different electronic structures of these two isostructural systems have a direct influence on the conducting properties, as demonstrated by band structure DFT calculations.

14.
Inorg Chem ; 57(9): 4934-4943, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29389126

RESUMO

Two Cu2+ coordination polymers [CuCl(pyz)2](BF4) 1 and [CuBr(pyz)2](BF4) 2 (pyz = pyrazine) were synthesized in the family of quasi two-dimensional (2D) [Cu(pyz)2]2+ magnetic networks. The layer connectivity by monatomic halide ligands results in significantly shorter interlayer distances. Structures were determined by single-crystal X-ray diffraction. Temperature-dependent X-ray diffraction of 1 revealed rigid [Cu(pyz)2]2+ layers that do not expand between 5 K and room temperature, whereas the expansion along the c-axis amounts to 2%. The magnetic susceptibility of 1 and 2 shows a broad maximum at ∼8 K, indicating antiferromagnetic interactions within the [Cu(pyz)2]2+ layers. 2D Heisenberg model fits result in J∥ = 9.4(1) K for 1 and 8.9(1) K for 2. The interlayer coupling is much weaker with | J⊥| = 0.31(6) K for 1 and 0.52(9) K for 2. The electron density, experimentally determined and calculated by density functional theory, confirms the location of the singly occupied orbital (the magnetic orbital) in the tetragonal plane. The analysis of the spin density reveals a mainly σ-type exchange through pyrazine. Kinks in the magnetic susceptibility indicate the onset of long-range three-dimensional magnetic order below 4 K. The magnetic structures were determined by neutron diffraction. Magnetic Bragg peaks occur below TN = 3.9(1) K for 1 and 3.8(1) K for 2. The magnetic unit cell is doubled along the c-axis ( k = 0, 0, 0.5). The ordered magnetic moments are located in the tetragonal plane and amount to 0.76(8) µB/Cu2+ for 1 and 0.6(1) µB/Cu2+ for 2 at 1.5 K. The moments are coupled antiferromagnetically both in the ab plane and along the c-axis. The Cu2+ g-tensor was determined from electron spin resonance spectra as g x = 2.060(1), g z = 2.275(1) for 1 and g x = 2.057(1), g z = 2.272(1) for 2 at room temperature.

15.
Anal Chem ; 89(24): 13176-13181, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29131937

RESUMO

The renewed interest of mechanochemistry as an ecofriendly synthetic route has inspired original methodologies to probe reactions, with the aim to rationalize unknown mechanisms. Recently, Friscic et al. ( Nat. Chem. 2013 , 5 , 66 - 73 , DOI: 10.1038/nchem.1505 ) monitored the progress of milling reactions by synchrotron X-ray powder diffraction (XRPD). For the first time, it was possible to acquire directly information during a mechanochemical process. This new methodology is still in its early stages, and its development will definitively transform the fundamental understanding of mechanochemistry. A new type of in situ ball mill setup has been developed at the Materials Science beamline (Swiss Light Source, Paul Scherrer Institute, Switzerland). Its particular geometry, described here in detail, results in XRPD data displaying significantly lower background and much sharper Bragg peaks, which in turn allow more sophisticated analysis of mechanochemical processes, extending the limits of the technique.

16.
Phys Chem Chem Phys ; 19(2): 1551-1559, 2017 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-27990514

RESUMO

The use of mixed-linker metal-organic frameworks (MIXMOFs) is one of the most effective strategies to modulate the physical-chemical properties of MOFs without affecting the overall crystal structure. In many instances, MIXMOFs have been recognized as solid solutions, with random distribution of ligands, in agreement with the empirical rule known as Vegard's law. In this work, we have undertaken a study combining high-resolution powder X-ray diffraction (HR-PXRD) and density functional theory (DFT) calculations with the aim of understanding the reasons why UiO-66-based amino- and bromo-functionalized MIXMOFs (MIXUiO-66) undergo cell expansion obeying Vegard's law and how this behaviour is related to their physical-chemical properties. DFT calculations predict that the unit cell in amino-functionalized UiO-66 experiences only minor expansion as a result of steric effects, whereas major modification to the electronic features of the framework leads to weaker metal-linker interaction and consequently to the loss of stability at higher degrees of functionalization. For bromo-functionalized UiO-66, steric repulsion due to the size of bromine yields a large cell expansion, but the electronic features remain very similar to pristine UiO-66, preserving the stability of the framework upon functionalization. MIXUiO-66 obtained by either direct synthesis or by post-synthetic exchange shows Vegard-like behaviour, suggesting that both preparation methods yield solid solutions, but the thermal stability and the textural properties of the post-synthetic exchanged materials do not display a clear dependence on the chemical composition, as observed for the MOFs obtained by direct synthesis.

17.
J Phys Chem A ; 121(38): 7219-7235, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28922608

RESUMO

We outline in this combined experimental and theoretical NMR study that sign and magnitude of J(Si,H) coupling constants provide reliable indicators to evaluate the extent of the oxidative addition of Si-H bonds in hydrosilane complexes. In combination with experimental electron density studies and MO analyses a simple structure-property relationship emerges: positive J(Si,H) coupling constants are observed in cases where M → L π-back-donation (M = transition metal; L = hydrosilane ligand) dominates. The corresponding complexes are located close to the terminus of the respective oxidative addition trajectory. In contrast negative J(Si,H) values signal the predominance of significant covalent Si-H interactions and the according complexes reside at an earlier stage of the oxidative addition reaction pathway. Hence, in nonclassical hydrosilane complexes such as Cp2Ti(PMe3)(HSiMe3-nCln) (with n = 1-3) the sign of J(Si,H) changes from minus to plus with increasing number of chloro substituents n and maps the rising degree of oxidative addition. Accordingly, the sign and magnitude of J(Si,H) coupling constants can be employed to identify and characterize nonclassical hydrosilane species also in solution. These NMR studies might therefore help to reveal the salient control parameters of the Si-H bond activation process in transition-metal hydrosilane complexes which represent key intermediates for numerous metal-catalyzed Si-H bond activation processes. Furthermore, experimental high-resolution and high-pressure X-ray diffraction studies were undertaken to explore the close relationship between the topology of the electron density displayed by the η2(Si-H)M units and their respective J(Si,H) couplings.

18.
J Am Chem Soc ; 137(40): 13072-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26401722

RESUMO

A flexible and porous metal-organic framework, based on Co(II) connectors and benzotriazolide-5-carboxylato linkers, is shown to selectively react with guest molecules trapped in the channels during the sample preparation or after an exchange process. Stimulated by a small crystal shrinking, upon compression or cooling, the system undergoes a reversible, nonoxidative nucleophilic addition of the guest molecules to the metal ion. With dimethylformamide, only part of the penta-coordinated Co atoms transform into hexa-coordinated, whereas with the smaller methanol all of them stepwise increase their coordination, preserving the crystallinity of the solid at all stages. This extraordinary example of chemisorption has enormous implications for catalysis, storage, or selective sieving.

20.
Angew Chem Int Ed Engl ; 54(8): 2505-9, 2015 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-25583538

RESUMO

Square-planar d(8)-ML4 complexes might display subtle but noticeable local Lewis acidic sites in axial direction in the valence shell of the metal atom. These sites of local charge depletion provide the electronic prerequisites to establish weakly attractive 3c-2e M⋅⋅⋅H-C agostic interactions, in contrast to earlier assumptions. Furthermore, we show that the use of the sign of the (1)H NMR shifts as major criterion to classify M⋅⋅⋅H-C interactions as attractive (agostic) or repulsive (anagostic) can be dubious. We therefore suggest a new characterization method to probe the response of these M⋅⋅⋅H-C interactions under pressure by combined high pressure IR and diffraction studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA