Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Langmuir ; 39(25): 8589-8602, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37079897

RESUMO

Microbial adhesion and spreading on surfaces are crucial aspects in environmental and industrial settings being also the early stage of complex surface-attached microbial communities known as biofilms. In this work, Pseudomonas fluorescens-laden droplets on hydrophilic substrates (glass coupons) are allowed to partially evaporate before running wetting measurements, to study the effect of evaporation on their interfacial behavior during spillover or splashing. Forced wetting is investigated by imposing controlled centrifugal forces, using a novel rotatory device (Kerberos). At a defined evaporation time, results for the critical tangential force required for the inception of sliding are presented. Microbe-laden droplets exhibit different wetting/spreading properties as a function of the imposed evaporation times. It is found that evaporation is slowed down in bacterial droplets with respect to nutrient medium ones. After sufficient drying times, bacteria accumulate at droplet edges, affecting the droplet shape and thus depinning during forced wetting tests. Droplet rear part does not pin during the rotation test, while only the front part advances and spreads along the force direction. Quantitative results obtained from the well-known Furmidge's equation reveal that force for sliding inception increases as evaporation time increases. This study can be of support for control of biofilm contamination and removal and possible design of antimicrobial/antibiofouling surfaces.


Assuntos
Pseudomonas fluorescens , Pseudomonas fluorescens/química , Molhabilidade , Interações Hidrofóbicas e Hidrofílicas , Volatilização , Viscosidade
2.
Soft Matter ; 19(11): 2053-2057, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36866743

RESUMO

Hydrogels have been successfully employed as analogues of the extracellular matrix to study biological processes such as cells' migration, growth, adhesion and differentiation. These are governed by many factors, including the mechanical properties of hydrogels; yet, a one-to-one correlation between the viscoelastic properties of gels and cell fate is still missing from literature. In this work we provide experimental evidence supporting a possible explanation for the persistence of this knowledge gap. In particular, we have employed common tissues' surrogates such as polyacrylamide and agarose gels to elucidate a potential pitfall occurring when performing rheological characterisations of soft-materials. The issue is related to (i) the normal force applied to the samples prior to performing the rheological measurements, which may easily drive the outcomes of the investigation outside the materials' linear viscoelastic regime, especially when tests are performed with (ii) geometrical tools having unbefitting dimensions (i.e., too small). We corroborate that biomimetic hydrogels can show either compressional stress softening or stiffening, and we provide a simple solution to quench these undesired phenomena, which would likely lead to potentially misleading conclusions if they were not mitigated by a good practice in performing rheological measurements, as elucidated in this work.


Assuntos
Artefatos , Hidrogéis , Fenômenos Mecânicos , Matriz Extracelular
3.
Langmuir ; 37(37): 10890-10901, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34314173

RESUMO

Wetting of dehydrated Pseudomonas fluorescens biofilms grown on glass substrates by an external liquid is employed as a means to investigate the complex morphology of these biofilms along with their capability to interact with external fluids. The porous structure left behind after dehydration induces interesting droplet spreading on the external surface and imbibition into pores upon wetting. Static contact angles and volume loss by imbibition measured right upon droplet deposition indicate that biofilms of higher incubation times show a higher porosity and effective hydrophilicity. Furthermore, during subsequent rotation tests, using Kerberos device, these properties dictate a peculiar forced wetting/spreading behavior. As rotation speed increases a long liquid tail forms progressively at the rear part of the droplet, which stays pinned at all times, while only the front part of the droplet depins and spreads. Interestingly, the experimentally determined retention force for the onset of droplet sliding on biofilm external surface is lower than that on pure glass. An effort is made to describe such complex forced wetting phenomena by presenting apparent contact angles, droplet length, droplet shape contours, and edges position as obtained from detailed image analysis.


Assuntos
Pseudomonas fluorescens , Biofilmes , Interações Hidrofóbicas e Hidrofílicas , Porosidade , Molhabilidade
4.
Soft Matter ; 16(11): 2854-2863, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32107513

RESUMO

Multiphase shear flows often show banded structures that affect the global behavior of complex fluids e.g. in microdevices. Here we investigate numerically the banding of emulsions, i.e. the formation of regions of high and low volume fractions, alternated in the vorticity direction and aligned with the flow (shear bands). These bands are associated with a decrease of the effective viscosity of the system. To understand the mechanism of experimentally observed banding, we have performed interface-resolved simulations of the two-fluid system. The experiments were performed starting with a random distribution of droplets, which under the applied shear, evolve in time resulting in a phase separation. To numerically reproduce this process, the banded structures are initialized in a narrow channel confined by two walls moving in opposite directions. We find that the initial banded distribution is stable when droplets are free to merge and unstable when coalescence is prevented. In this case, additionally, the effective viscosity of the system increases, resembling the rheological behavior of suspensions of deformable particles. Droplet coalescence, on the other hand, allows emulsions to reduce the total surface of the system and, hence, the energy dissipation associated with the deformation, which in turn reduces the effective viscosity.

5.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198325

RESUMO

Biofilms consist of a complex microbial community adhering to biotic or abiotic surfaces and enclosed within a protein/polysaccharide self-produced matrix. The formation of this structure represents the most important adaptive mechanism that leads to antibacterial resistance, and therefore, closely connected to pathogenicity. Antimicrobial peptides (AMPs) could represent attractive candidates for the design of new antibiotics because of their specific characteristics. AMPs show a broad activity spectrum, a relative selectivity towards their targets (microbial membranes), the ability to act on both proliferative and quiescent cells, a rapid mechanism of action, and above all, a low propensity for developing resistance. This article investigates the effect at subMIC concentrations of Temporin-L (TL) on biofilm formation in Pseudomonas fluorescens (P. fluorescens) both in static and dynamic conditions, showing that TL displays antibiofilm properties. Biofilm formation in static conditions was analyzed by the Crystal Violet assay. Investigation of biofilms in dynamic conditions was performed in a commercial microfluidic device consisting of a microflow chamber to simulate real flow conditions in the human body. Biofilm morphology was examined using Confocal Laser Scanning Microscopy and quantified via image analysis. The investigation of TL effects on P. fluorescens showed that when subMIC concentrations of this peptide were added during bacterial growth, TL exerted antibiofilm activity, impairing biofilm formation both in static and dynamic conditions. Moreover, TL also affects mature biofilm as confocal microscopy analyses showed that a large portion of preformed biofilm architecture was clearly perturbed by the peptide addition with a significative decrease of all the biofilm surface properties and the overall biomass. Finally, in these conditions, TL did not affect bacterial cells as the live/dead cell ratio remained unchanged without any increase in damaged cells, confirming an actual antibiofilm activity of the peptide.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Polissacarídeos Bacterianos/química , Pseudomonas fluorescens/efeitos dos fármacos , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Biomassa , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Microfluídica , Microscopia Confocal , Polímeros/química , Resistência ao Cisalhamento , Estresse Mecânico , Propriedades de Superfície
6.
Biomed Microdevices ; 21(2): 40, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30949850

RESUMO

Cancer continues to be among the leading healthcare problems worldwide, and efforts continue not just to find better drugs, but also better drug delivery methods. The need for delivering cytotoxic agents selectively to cancerous cells, for improved safety and efficacy, has triggered the application of nanotechnology in medicine. This effort has provided drug delivery systems that can potentially revolutionize cancer treatment. Nanocarriers, due to their capacity for targeted drug delivery, can shift the balance of cytotoxicity from healthy to cancerous cells. The field of cancer nanomedicine has made significant progress, but challenges remain that impede its clinical translation. Several biophysical barriers to the transport of nanocarriers to the tumor exist, and a much deeper understanding of nano-bio interactions is necessary to change the status quo. Mathematical modeling has been instrumental in improving our understanding of the physicochemical and physiological underpinnings of nanomaterial behavior in biological systems. Here, we present a comprehensive review of literature on mathematical modeling works that have been and are being employed towards a better understanding of nano-bio interactions for improved tumor delivery efficacy.


Assuntos
Modelos Biológicos , Nanomedicina , Neoplasias , Animais , Transporte Biológico , Humanos , Nanopartículas/química , Neoplasias/metabolismo , Distribuição Tecidual
7.
Soft Matter ; 15(41): 8352-8360, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31577316

RESUMO

Concentrated aqueous solutions of surfactants, often referred to as pastes, experience complex phase and rheology changes upon dissolution in water, which is a typical step in the production of liquid detergents. During the dilution process, depending on water content, surfactant molecules can arrange in different morphologies, such as lamellar or cubic and hexagonal structures. These phases are characterized by different physico-chemical properties, such as viscosity or diffusivity, which lead to non-simple transport mechanisms during the dissolution process. In this work, we investigate the dissolution of concentrated Sodium Lauryl Ether Sulfate (SLES) pastes in water under quiescent conditions by coupling different experimental techniques. A thorough rheological characterization of the system showed non-monotonic changes of several orders of magnitude in its viscosity and viscoelastic moduli as a function of water content. Time-lapse microscopy allowed us to image the dynamic evolution of the phase changes as water penetrated in a disk-shaped sample (with the same geometry used in rheological tests). Numerical simulation, based on a simple diffusion-based multi-parameter model is shown to describe satisfactorily SLES dissolution data.

8.
Exp Cell Res ; 352(2): 175-183, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28137539

RESUMO

The Wound Healing (WH) assay is widely used to investigate cell migration in vitro, in order to reach a better understanding of many physiological and pathological phenomena. Several experimental factors, such as uneven cell density among different samples, can affect the reproducibility and reliability of this assay, leading to a discrepancy in the wound closure kinetics among data sets corresponding to the same cell sample. We observed a linear relationship between the wound closure velocity and cell density, and suggested a novel methodological approach, based on transport phenomena concepts, to overcome this source of error on the analysis of the Wound Healing assay. In particular, we propose a simple scaling of the experimental data, based on the interpretation of the wound closure as a diffusion-reaction process. We applied our methodology to the MDA-MB-231 breast cancer cells, whose motility was perturbed by silencing or over-expressing genes involved in the control of cell migration. Our methodological approach leads to a significant improvement in the reproducibility and reliability in the in vitro WH assay.


Assuntos
Ensaios de Migração Celular/métodos , Reepitelização , Linhagem Celular Tumoral , Ensaios de Migração Celular/instrumentação , Movimento Celular , Humanos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos
9.
Exp Cell Res ; 347(1): 123-132, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27475838

RESUMO

Cell migration plays a key role in many biological processes, including cancer growth and invasion, embryogenesis, angiogenesis, inflammatory response, and tissue repair. In this work, we compare two well-established experimental approaches for the investigation of cell motility in vitro: the cell random migration (CRM) and the wound healing (WH) assay. In the former, extensive tracking of individual live cells trajectories by time-lapse microscopy and elaborate data processing are used to calculate two intrinsic motility parameters of the cell population under investigation, i.e. the diffusion coefficient and the persistence time. In the WH assay, a scratch is made in a confluent cell monolayer and the closure time of the exposed area is taken as an easy-to-measure, empirical estimate of cell migration. To compare WH and CRM we applied the two assays to investigate the motility of skin fibroblasts isolated from wild type and transgenic mice (TgPED) overexpressing the protein PED/PEA-15, which is highly expressed in patients with type 2 diabetes. Our main result is that the cell motility parameters derived from CRM can be also estimated from a time-resolved analysis of the WH assay, thus showing that the latter is also amenable to a quantitative analysis for the characterization of cell migration. To our knowledge this is the first quantitative comparison of these two widely used techniques.


Assuntos
Ensaios de Migração Celular/métodos , Fibroblastos/patologia , Cicatrização , Animais , Movimento Celular , Camundongos Transgênicos , Fatores de Tempo
10.
Mater Today Bio ; 26: 101066, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38693994

RESUMO

This study introduces a novel mechanobiology assay, named "i-Rheo-optical assay", that integrates rheology with optical microscopy for analysing the viscoelastic properties of multicellular spheroids. These spheroids serve as three-dimensional models resembling tissue structures. The innovative technique enables real-time observation and quantification of morphological responses to applied stress using a cost-effective microscope coverslip for constant compression force application. By bridging a knowledge gap in biophysical research, which has predominantly focused on the elastic properties while only minimally exploring the viscoelastic nature in multicellular systems, the i-Rheo-optical assay emerges as an effective tool. It facilitates the measurement of broadband viscoelastic compressional moduli in spheroids, here derived from cancer (PANC-1) and non-tumoral (NIH/3T3) cell lines during compression tests. This approach plays a crucial role in elucidating the mechanical properties of spheroids and holds potential for identifying biomarkers to discriminate between healthy tissues and their pathological counterparts. Offering comprehensive insights into the biomechanical behaviour of biological systems, i-Rheo-optical assay marks a significant advancement in tissue engineering, cancer research, and therapeutic development.

11.
Sci Rep ; 14(1): 20837, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242641

RESUMO

Tumours often display invasive behaviours that induce fingering, branching and fragmentation processes. The phenomenon, known as diffusional instability, is driven by differential cell proliferation, migration, and death due to the presence of metabolite and catabolite concentration gradients. An understanding of the intricate dynamics of this spatially heterogeneous process plays a key role in the investigation of tumour growth and invasion. In this study, we developed an in vitro tumour invasion assay to investigate cell invasiveness in tumour spheroids under a chemotactic stimulus. Our method, employing tumour spheroids seeded in a 3D collagen gel within a microfluidic chemotaxis chamber, focuses on the role of diffusive gradients. Using Time-Lapse Microscopy, the dynamic evolution of tumour spheroids was monitored in real-time, providing a comprehensive view of the morphological changes and cell migration patterns under different chemotactic conditions. Specifically, we explored the impact of fetal bovine serum (FBS) gradients on the behaviour of CT26 mouse colon carcinoma cells and compared the effects of varying FBS concentrations to two isotropic control conditions. Furthermore, a finite element in silico model was developed to quantify the diffusive flow of nutrients in the chemotaxis chamber and obtain a detailed understanding of tumour dynamics. Our findings reveal that the presence of a chemotactic gradient significantly influences tumour invasiveness, with higher concentrations of nutrients associated with increased cancer growth and cell migration.


Assuntos
Movimento Celular , Quimiotaxia , Esferoides Celulares , Microambiente Tumoral , Esferoides Celulares/patologia , Animais , Camundongos , Linhagem Celular Tumoral , Proliferação de Células , Nutrientes/metabolismo , Invasividade Neoplásica , Humanos
12.
Polymers (Basel) ; 16(13)2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39000788

RESUMO

Crude oil, also known as petroleum, plays a crucial role in global economies, politics, and technological advancements due to its widespread applications in industrial organic chemistry. Despite environmental concerns, the dwindling supply of easily accessible oil reservoirs necessitates the exploration of unconventional resources, such as heavy and extra-heavy oils. These oils, characterized by high viscosity and complex composition, pose challenges in extraction, transportation, and refinement. With decreasing temperatures, heavy oils undergo phase changes, with transitions from Newtonian to non-Newtonian fluid behavior, leading to difficulties in transportation. Alternative methods, such as the use of polymeric pour-point depressants, help mitigate flowability issues by preventing wax precipitation. Understanding the properties of waxy crude oil, such as the wax appearance temperature (WAT), is crucial for effective mitigation strategies. The objective of this research is to determine the WATs of different types of waxy crude oils through a comparative analysis using advanced techniques such as cross-polar microscopy (CPM), standard rheology, and differential scanning calorimetry (DSC). Disparities in WAT identified through different analytical methods highlight the potential of microscopy to enhance our understanding of complex fluid dynamics in real time in order to proactively identify and address crystallization issues in oilfields.

13.
Pharmaceutics ; 16(2)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38399251

RESUMO

Innovations in drug delivery systems are crucial for enhancing therapeutic efficiency. Our research presents a novel approach based on using electro-fluid dynamic atomization (EFDA) to fabricate core-shell monophasic particles (CSMp) from sodium alginate blends of varying molecular weights. This study explores the morphological characteristics of these particles in relation to material properties and process conditions, highlighting their potential in drug delivery applications. A key aspect of our work is the development of a mathematical model that simulates the release kinetics of small molecules, specifically sodium diclofenac. By assessing the diffusion properties of different molecules and gel formulations through transport and rheological models, we have created a predictive tool for evaluating the efficiency of these particles in drug delivery. Our findings underscore two critical, independent parameters for optimizing drug release: the external shell thickness and the diffusivity ratios within the dual layers. This allows for precise control over the timing and intensity of the release profile. This study advances our understanding of EFDA in the fabrication of CSMp and offers promising avenues for enhancing drug delivery systems by tailoring release profiles through particle characteristic manipulation.

14.
ACS Omega ; 9(10): 11701-11717, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38496925

RESUMO

As the population ages, the number of vascular surgery procedures performed increases. Older adults often have multiple comorbidities, such as diabetes and hypertension, that increase the risk of complications from vascular surgery including vascular graft infection (VGI). VGI is a serious complication with significant morbidity, mortality, and healthcare costs. Here, we aimed to develop a nanofibrous chitosan-based coating for vascular grafts loaded with different concentrations of the vancomycin antibiotic vancomycin (VAN). Blending chitosan with poly(vinyl alcohol) or poly(ethylene oxide) copolymers improved solubility and ease of spinning. Thermal gravimetric analysis and Fourier transform infrared spectroscopy confirmed the presence of VAN in the nanofibrous membranes. Kinetics of VAN release from the nanofibrous mats were evaluated using high-performance liquid chromatography, showing a burst followed by sustained release over 24 h. To achieve longer sustained release, a poly(lactic-co-glycolic acid) coating was applied, resulting in extended release of up to 7 days. Biocompatibility assessment using human umbilical vein endothelial cells demonstrated successful attachment and viability of the nanofiber patches. Our study provides insights into the development of a drug delivery system for vascular grafts aimed at preventing infection during implantation, highlighting the potential of electrospinning as a promising technique in the field of vascular surgery.

15.
Colloids Surf B Biointerfaces ; 237: 113831, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508084

RESUMO

Biofilms are complex porous materials formed by microorganisms, polysaccharides, proteins, eDNA, inorganic matter, and water. They are ubiquitous in various environmental niches and are known to grow at solid-liquid, solid-air and air-liquid interfaces, often causing problems in several industrial and sanitary fields. Their removal is a challenge in many applications and numerous studies have been conducted to identify promising chemical species as cleaning agents. While these substances target specific components of biofilm structure, the role of water content in biofilm, and how it can influence wettability and detergent absorption have been quite neglected in the literature. Estimating water content in biofilm is a challenging task due to its heterogeneity in morphology and chemical composition. In this study, we controlled water content in Pseudomonas fluorescens AR 11 biofilms grown on submerged glass slides by regulating environmental relative humidity after drying. Interfacial properties of biofilm were investigated by measuring wetting of water and soybean oil. The morphology of biofilm structure was evaluated using Confocal Laser Scanning Microscopy and Scanning Electron Microscopy. The results showed that biofilm water content has a significant and measurable effect on its wettability, leading to the hypothesis that a preliminary control of water content can play a crucial role in biofilm removal process.


Assuntos
Pseudomonas fluorescens , Molhabilidade , Pseudomonas fluorescens/fisiologia , Umidade , Biofilmes , Água
16.
J Biol Chem ; 287(36): 30170-80, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22787154

RESUMO

The Y-box binding protein 1 (YB-1) belongs to the cold-shock domain protein superfamily, one of the most evolutionarily conserved nucleic acid-binding proteins currently known. YB-1 performs a wide variety of cellular functions, including transcriptional and translational regulation, DNA repair, drug resistance, and stress responses to extracellular signals. Inasmuch as the level of YB-1 drastically increases in tumor cells, this protein is considered to be one of the most indicative markers of malignant tumors. Here, we present evidence that ΔNp63α, the predominant p63 protein isoform in squamous epithelia and YB-1, can physically interact. Into the nucleus, ΔNp63α and YB-1 cooperate in PI3KCA gene promoter activation. Moreover, ΔNp63α promotes YB-1 nuclear accumulation thereby reducing the amount of YB-1 bound to its target transcripts such as that encoding the SNAIL1 protein. Accordingly, ΔNp63α enforced expression was associated with a reduction of the level of SNAIL1, a potent inducer of epithelial to mesenchymal transition. Furthermore, ΔNp63α depletion causes morphological change and enhanced formation of actin stress fibers in squamous cancer cells. Mechanistic studies indicate that ΔNp63α affects cell movement and can reverse the increase of cell motility induced by YB-1 overexpression. These data thus suggest that ΔNp63α provides inhibitory signals for cell motility. Deficiency of ΔNp63α gene expression promotes cell mobilization, at least partially, through a YB-1-dependent mechanism.


Assuntos
Movimento Celular , Núcleo Celular/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Transporte Ativo do Núcleo Celular/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Sobrevivência Celular/genética , Humanos , Isoformas de Proteínas , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Proteína 1 de Ligação a Y-Box/genética
17.
Langmuir ; 29(29): 9224-30, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23786307

RESUMO

Recently, optical tweezing has been used to provide a method for microrheology addressed to measure the rheological properties of small volumes of samples. In this work, we corroborate this emerging field of microrheology by using these optical methods for the characterization of polyelectrolyte solutions with very low viscoelasticity. The influence of polyelectrolyte (i.e., polyacrylamide, PAM) concentration, specifically its aging, of the salt concentration is shown. The close agreement of the technique with classical bulk rheological measurements is demonstrated, illustrating the advantages of the technique.


Assuntos
Resinas Acrílicas/química , Elasticidade , Eletrólitos/química , Pinças Ópticas , Reologia , Soluções , Viscosidade
18.
Cancers (Basel) ; 15(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958456

RESUMO

PURPOSE: Cell migration is a critical driver of metastatic tumor spread, contributing significantly to cancer-related mortality. Yet, our understanding of the underlying mechanisms remains incomplete. METHODS: In this study, a wound healing assay was employed to investigate cancer cell migratory behavior, with the aim of utilizing migration as a biomarker for invasiveness. To gain a comprehensive understanding of this complex system, we developed a computational model based on cellular automata (CA) and rigorously calibrated and validated it using in vitro data, including both tumoral and non-tumoral cell lines. Harnessing this CA-based framework, extensive numerical experiments were conducted and supported by local and global sensitivity analyses in order to identify the key biological parameters governing this process. RESULTS: Our analyses led to the formulation of a power law equation derived from just a few input parameters that accurately describes the governing mechanism of wound healing. This groundbreaking research provides a powerful tool for the pharmaceutical industry. In fact, this approach proves invaluable for the discovery of novel compounds aimed at disrupting cell migration, assessing the efficacy of prospective drugs designed to impede cancer invasion, and evaluating the immune system's responses.

19.
Microorganisms ; 11(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36985196

RESUMO

Microbial colonization of surfaces is a sanitary and industrial issue for many applications, leading to product contamination and human infections. When microorganisms closely interact with a surface, they start to produce an exo-polysaccaridic matrix to adhere to and protect themselves from adverse environmental conditions. This type of structure is called a biofilm. The aim of our work is to investigate novel technologies able to prevent biofilm formation by surface coatings. We coated glass surfaces with melanin-ZnO2, melanin-TiO2, and TiO2 hybrid nanoparticles. The functionalization was performed using cold plasma to activate glass-substrate-coated surfaces, that were characterized by performing water and soybean oil wetting tests. A quantitative characterization of the antibiofilm properties was done using Pseudomonas fluorescens AR 11 as a model organism. Biofilm morphologies were observed using confocal laser scanning microscopy and image analysis techniques were used to obtain quantitative morphological parameters. The results highlight the efficacy of the proposed surface coating to prevent biofilm formation. Melanin-TiO2 proved to be the most efficient among the particles investigated. Our results can be a valuable support for future implementation of the technique proposed here in an extended range of applications that may include further testing on other strains and other support materials.

20.
Cancers (Basel) ; 15(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38067364

RESUMO

PURPOSE: In recent years, mathematical models have become instrumental in cancer research, offering insights into tumor growth dynamics, and guiding the development of pharmacological strategies. These models, encompassing diverse biological and physical processes, are increasingly used in clinical settings, showing remarkable predictive precision for individual patient outcomes and therapeutic responses. METHODS: Motivated by these advancements, our study introduces an innovative in silico model for simulating tumor growth and invasiveness. The automated hybrid cell emulates critical tumor cell characteristics, including rapid proliferation, heightened motility, reduced cell adhesion, and increased responsiveness to chemotactic signals. This model explores the potential evolution of 3D tumor spheroids by manipulating biological parameters and microenvironment factors, focusing on nutrient availability. RESULTS: Our comprehensive global and local sensitivity analysis reveals that tumor growth primarily depends on cell duplication speed and cell-to-cell adhesion, rather than external chemical gradients. Conversely, tumor invasiveness is predominantly driven by chemotaxis. These insights illuminate tumor development mechanisms, providing vital guidance for effective strategies against tumor progression. Our proposed model is a valuable tool for advancing cancer biology research and exploring potential therapeutic interventions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA