Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 56: 384-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23911793

RESUMO

On retinal ganglion cells (RGCs) transmit light encoded information to the brain and receive excitatory input from On cone bipolar cells (CBPs). The synaptic CBP input onto On RGCs is mediated by AMPA-type glutamate receptors (AMPARs) that include both those lacking a GluA2 subunit, and are therefore permeable to Ca(2+), and those that possess at least one GluA2 subunit and are Ca(2+)-impermeable. We have previously demonstrated in electrophysiological studies that periods of low synaptic activity, brought about by housing animals in darkness, enhance the proportion of GluA2-lacking AMPARs at the On CBP-On RGC synapse by mobilizing surface GluA2 containing receptors into a receptor pool that rapidly cycles in and out of the membrane. AMPAR cycling induction by reduced synaptic activity takes several hours. This delay suggests that changes in expression of proteins which regulate AMPAR trafficking may mediate the altered mobility of GluA2 AMPARs in RGCs. In this study, we test the hypothesis that AMPAR trafficking proteins couple synaptic activity to AMPAR cycling in RGCs. Immunocytochemical and biochemical analyses confirmed that darkness decreases surface GluA2 in RGCs and changed the expression levels of three proteins associated with GluA2 trafficking. GRIP was decreased, while PICK1 and Arc were increased. Knockdown of GRIP with siRNA elevated constitutive AMPAR cycling, mimicking effects of reduced synaptic activity, while knockdown of PICK1 and Arc blocked increases in constitutive GluA2 trafficking. Our results support a role for correlated, activity-driven changes in multiple AMPAR trafficking proteins that modulate GluA2 cycling which can in turn affect synaptic AMPAR composition in RGCs.


Assuntos
Receptores de AMPA/metabolismo , Células Ganglionares da Retina/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Transporte Proteico , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/genética , Células Ganglionares da Retina/fisiologia , Membranas Sinápticas/metabolismo , Transmissão Sináptica
2.
Mol Cell Neurosci ; 48(2): 161-70, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21807099

RESUMO

Activation of metabotropic- (mGluRs) or NMDA-type glutamate receptors (NMDARs) each can induce long-term depression (LTD) of synaptic transmission in CA1 hippocampal neurons. These two forms of LTD are triggered by diverse signaling pathways yet both are expressed by the internalization of AMPA-type glutamate receptors (AMPARs). An unanswered question remains as to whether the convergence of the mGluR and NMDAR signaling pathways on AMPAR endocytosis renders these two forms of plasticity functionally equivalent, with both pathways inducing endocytosis of the same population of synaptic AMPARs. We now report evidence that these pathways couple to the endocytosis of distinct populations of AMPARs defined by their mobility in the membrane surface. NMDAR activation enhances removal of surface AMPARs that rapidly cycle into and out of the membrane surface, while activation of mGluRs with DHPG results in the internalization of a non-mobile population of AMPARs. Glutamate Receptor Interacting Proteins 1 and 2 (GRIP1/2) play a key role in defining the non-cycling receptor population. GRIP1/2 knockdown with siRNA increases the proportion of rapidly cycling surface AMPARs and inhibits mGluR- but not NMDAR-mediated AMPAR internalization. Additionally, we find that mGluR activation dissociates surface AMPARs from GRIP1/2 while stimulation of NMDARs elicits the loss of membrane receptors not bound to GRIP1/2. We propose that these two receptor pathways can drive the endocytosis of distinct populations of AMPARs: NMDARs activation induces the endocytosis of rapidly cycling surface AMPARs not directly associated with GRIP1/2 while mGluR activation induces the endocytosis of non-cycling GRIP-bound surface AMPARs.


Assuntos
Endocitose/fisiologia , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Hipocampo/citologia , Peptídeos e Proteínas de Sinalização Intercelular , Peptídeos e Proteínas de Sinalização Intracelular , Depressão Sináptica de Longo Prazo/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Técnicas de Patch-Clamp , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/fisiologia
3.
J Neurophysiol ; 96(4): 1734-45, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16823030

RESUMO

Fragile X syndrome is produced by a defect in a single X-linked gene, called Fmr1, and is characterized by abnormal dendritic spine morphologies with spines that are longer and thinner in neocortex than those from age-matched controls. Studies using Fmr1 knockout mice indicate that spine abnormalities are especially pronounced in the first month of life, suggesting that altered developmental plasticity underlies some of the behavioral phenotypes associated with the syndrome. To address this issue, we used intracellular recordings in neocortical slices from early postnatal mice to examine the effects of Fmr1 disruption on two forms of plasticity active during development. One of these, long-term potentiation of intrinsic excitability, is intrinsic in expression and requires mGluR5 activation. The other, spike timing-dependent plasticity, is synaptic in expression and requires N-methyl-d-aspartate receptor activation. While intrinsic plasticity was normal in the knockout mice, synaptic plasticity was altered in an unusual and striking way: long-term depression was robust but long-term potentiation was entirely absent. These findings underscore the ideas that Fmr1 has highly selective effects on plasticity and that abnormal postnatal development is an important component of the disorder.


Assuntos
Animais Recém-Nascidos/fisiologia , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/fisiologia , Neocórtex/crescimento & desenvolvimento , Plasticidade Neuronal/fisiologia , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Animais , Animais Recém-Nascidos/genética , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neocórtex/fisiologia , Plasticidade Neuronal/genética , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/fisiologia , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/fisiologia , Sinapses/genética , Sinapses/fisiologia , Transmissão Sináptica/genética , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA