Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(3)2022 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-35161978

RESUMO

Tin dioxide (SnO2) is the most-used semiconductor for gas sensing applications. However, lack of selectivity and humidity influence limit its potential usage. Antimony (Sb) doped SnO2 showed unique electrical and chemical properties, since the introduction of Sb ions leads to the creation of a new shallow band level and of oxygen vacancies acting as donors in SnO2. Although low-doped SnO2:Sb demonstrated an improvement of the sensing performance compared to pure SnO2, there is a lack of investigation on this material. To fill this gap, we focused this work on the study of gas sensing properties of highly doped SnO2:Sb. Morphology, crystal structure and elemental composition were characterized, highlighting that Sb doping hinders SnO2 grain growth and decreases crystallinity slightly, while lattice parameters expand after the introduction of Sb ions into the SnO2 crystal. XRF and EDS confirmed the high purity of the SnO2:Sb powders, and XPS highlighted a higher Sb concentration compared to XRF and EDS results, due to a partial Sb segregation on superficial layers of Sb/SnO2. Then, the samples were exposed to different gases, highlighting a high selectivity to NO2 with a good sensitivity and a limited influence of humidity. Lastly, an interpretation of the sensing mechanism vs. NO2 was proposed.

2.
Sensors (Basel) ; 20(20)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086770

RESUMO

Among the various chemoresistive gas sensing properties studied so far, the sensing response reproducibility, i.e., the capability to reproduce a device with the same sensing performance, has been poorly investigated. However, the reproducibility of the gas sensing performance is of fundamental importance for the employment of these devices in on-field applications, and to demonstrate the reliability of the process development. This sensor property became crucial for the preparation of medical diagnostic tools, in which the use of specific chemoresistive gas sensors along with a dedicated algorithm can be used for screening diseases. In this work, the reproducibility of SmFeO3 perovskite-based gas sensors has been investigated. A set of four SmFeO3 devices, obtained from the same screen-printing deposition, have been tested in laboratory with both controlled concentrations of CO and biological fecal samples. The fecal samples tested were employed in the clinical validation protocol of a prototype for non-invasive colorectal cancer prescreening. Sensors showed a high reproducibility degree, with an error lower than 2% of the response value for the test with CO and lower than 6% for fecal samples. Finally, the reproducibility of the SmFeO3 sensor response and recovery times for fecal samples was also evaluated.


Assuntos
Neoplasias Colorretais , Detecção Precoce de Câncer , Nanoestruturas , Técnicas Biossensoriais , Neoplasias Colorretais/diagnóstico , Humanos , Programas de Rastreamento , Reprodutibilidade dos Testes
3.
ACS Appl Mater Interfaces ; 9(29): 24812-24820, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28657706

RESUMO

A deepened investigation on an innovative organic-inorganic hybrid material, referred to as ECS-14 (where ECS = Eni carbon silicates), revealed the possibility to use them as gas sensors. Indeed, among ECS phases, the crystalline state and the hexagonal microplateletlike morphology characteristic of ECS-14 seemed favorable properties to obtain continuous and uniform films. ECS-14 phase was used as functional material in screen-printable compositions and was thus deposited by drop coating for morphological, structural, thermal, and electrical characterizations. Possible operation at room temperature was investigated as technological progress, offering intrinsic safety in sensors working in harsh or industrial environments and avoiding high power consumption of most common sensors based on metal oxide semiconductors. Electrical characterization of the sensors based on ECS-14 versus concentrations of gaseous analytes gave significant results at room temperature in the presence of humidity, thereby demonstrating fundamental properties for a good quality sensor (speed, reversibility, and selectivity) that make them competitive with respect to systems currently in use. Remarkably, we observed functionality reversal of the organic and inorganic components; that is, in contrast to other hybrids, for ECS-14 the functional site has been ascribed to the inorganic phase while the organic component provided structural stability to the material. The sensing mechanism for humidity was also investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA