Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO Rep ; 16(10): 1334-57, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26265008

RESUMO

In embryonic stem cells (ESCs), gene regulatory networks (GRNs) coordinate gene expression to maintain ESC identity; however, the complete repertoire of factors regulating the ESC state is not fully understood. Our previous temporal microarray analysis of ESC commitment identified the E3 ubiquitin ligase protein Makorin-1 (MKRN1) as a potential novel component of the ESC GRN. Here, using multilayered systems-level analyses, we compiled a MKRN1-centered interactome in undifferentiated ESCs at the proteomic and ribonomic level. Proteomic analyses in undifferentiated ESCs revealed that MKRN1 associates with RNA-binding proteins, and ensuing RIP-chip analysis determined that MKRN1 associates with mRNAs encoding functionally related proteins including proteins that function during cellular stress. Subsequent biological validation identified MKRN1 as a novel stress granule-resident protein, although MKRN1 is not required for stress granule formation, or survival of unstressed ESCs. Thus, our unbiased systems-level analyses support a role for the E3 ligase MKRN1 as a ribonucleoprotein within the ESC GRN.


Assuntos
Células-Tronco Embrionárias/fisiologia , Redes Reguladoras de Genes/genética , Proteínas do Tecido Nervoso/genética , Ribonucleoproteínas/genética , Animais , Citoplasma/metabolismo , Genômica , Camundongos , Proteínas do Tecido Nervoso/química , Proteômica , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/química , Ubiquitina-Proteína Ligases/metabolismo
2.
Physiol Genomics ; 45(2): 89-97, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23212943

RESUMO

Neuromedin U (NMU) plays an important role in a number of physiological processes, but the relative contribution of its two known receptors, NMUR1 and NMUR2, is still poorly understood. Here we report the existence of a SNP T(1022)→A (Val(341)→Glu) in the third exon of the rat Nmur1 gene that leads to an inactive receptor. This SNP is present within the coding region of the highly conserved NPXXY motif found within all class A type G protein-coupled receptors and translates to an NMUR1 receptor that is not expressed on the cell surface. Genetic analysis of the Nmur1 gene in a population of Sprague-Dawley rats revealed that this strain is highly heterogeneous for the inactivating polymorphism. The loss of functional NMUR1 receptors in Sprague-Dawley rats homozygous for the inactive allele was confirmed by radioligand binding studies on native tissue expressing NMUR1. The physiological relevance of this functional genomics finding was examined in two nociceptive response models. The pronociceptive effects of NMU were abolished in rats lacking functional NMUR1 receptors. The existence of naturally occurring NMUR1-deficient rats provides a novel and powerful tool to investigate the physiological role of NMU and its receptors. Furthermore, it highlights the importance of verifying the NMUR1 single nucleotide polymorphism status for rats used in physiological, pharmacological or toxicological studies conducted with NMUR1 modulators.


Assuntos
Genômica/métodos , Receptores de Neurotransmissores/genética , Alelos , Animais , Polimorfismo de Nucleotídeo Único/genética , Ratos , Ratos Sprague-Dawley
3.
J Cell Physiol ; 227(2): 439-49, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21503874

RESUMO

Stem cell behavior is orchestrated as a multilayered, concert of gene regulatory mechanisms collectively referred to as the gene regulatory network (GRN). Via cooperative mechanisms, transcriptional, epigenetic, and post-transcriptional regulators activate and repress gene expression to finely regulate stem cell self-renewal and commitment. Due to their tractability, embryonic stem cells (ESCs) serve as the model stem cell to dissect the complexities of the GRN, and discern its relation to stem cell fate. By way of high-throughput genomic analysis, targets of individual gene regulators have been established in ESCs. The compilation of these discrete networks has revealed convergent, multi-dimensional gene regulatory mechanisms involving transcription factors, epigenetic modifiers, non-coding RNA (ncRNA), and RNA-binding proteins. Here we highlight the seminal genomic studies that have shaped our understanding of the ESC GRN and describe alternate post-transcriptional gene regulatory mechanisms that require in depth analyses to draft networks that fully model ESC behavior.


Assuntos
Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia , Animais , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia
6.
Cell Stem Cell ; 1(1): 71-86, 2007 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-18371337

RESUMO

Stem cell fate is governed by the integration of intrinsic and extrinsic positive and negative signals upon inherent transcriptional networks. To identify novel embryonic stem cell (ESC) regulators and assemble transcriptional networks controlling ESC fate, we performed temporal expression microarray analyses of ESCs after the initiation of commitment and integrated these data with known genome-wide transcription factor binding. Effects of forced under- or overexpression of predicted novel regulators, defined as differentially expressed genes with potential binding sites for known regulators of pluripotency, demonstrated greater than 90% correspondence with predicted function, as assessed by functional and high-content assays of self-renewal. We next assembled 43 theoretical transcriptional networks in ESCs, 82% (23 out of 28 tested) of which were supported by analysis of genome-wide expression in Oct4 knockdown cells. By using this integrative approach, we have formulated novel networks describing gene repression of key developmental regulators in undifferentiated ESCs and successfully predicted the outcomes of genetic manipulation of these networks.


Assuntos
Células-Tronco Embrionárias/citologia , Transcrição Gênica , Linhagem da Célula , Proteínas de Ligação a DNA/genética , Eletroporação , Proteínas HMGB/genética , Humanos , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/citologia , Reação em Cadeia da Polimerase , RNA Interferente Pequeno , Fatores de Transcrição SOXB1 , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA