Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(24): 8979-84, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24889613

RESUMO

CaV1 and CaV2 voltage-gated calcium channels are associated with ß and α2δ accessory subunits. However, examination of cell surface-associated CaV2 channels has been hampered by the lack of antibodies to cell surface-accessible epitopes and of functional exofacially tagged CaV2 channels. Here we report the development of fully functional CaV2.2 constructs containing inserted surface-accessible exofacial tags, which allow visualization of only those channels at the plasma membrane, in both a neuronal cell line and neurons. We first examined the effect of the auxiliary subunits. Although α2δ subunits copurify with CaV2 channels, it has recently been suggested that this interaction is easily disrupted and nonquantitative. We have now tested whether α2δ subunits are associated with these channels at the cell surface. We found that, whereas α2δ-1 is readily observed at the plasma membrane when expressed alone, it appears absent when coexpressed with CaV2.2/ß1b, despite our finding that α2δ-1 increases plasma-membrane CaV2.2 expression. However, this was due to occlusion of the antigenic epitope by association with CaV2.2, as revealed by antigen retrieval; thus, our data provide evidence for a tight interaction between α2δ-1 and the α1 subunit at the plasma membrane. We further show that, although CaV2.2 cell-surface expression is reduced by gabapentin in the presence of wild-type α2δ-1 (but not a gabapentin-insensitive α2δ-1 mutant), the interaction between CaV2.2 and α2δ-1 is not disrupted by gabapentin. Altogether, these results demonstrate that CaV2.2 and α2δ-1 are intimately associated at the plasma membrane and allow us to infer a region of interaction.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Canais de Cálcio/metabolismo , Aminas/química , Animais , Cálcio/química , Canais de Cálcio Tipo L , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Ácidos Cicloexanocarboxílicos/química , Eletrofisiologia , Epitopos/química , Gabapentina , Gânglios Espinais/metabolismo , Ligantes , Camundongos , Neuroblastoma/metabolismo , Neurônios/metabolismo , Estrutura Terciária de Proteína , Coelhos , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/química
2.
J Neurosci ; 35(15): 5891-903, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878262

RESUMO

As auxiliary subunits of voltage-gated Ca(2+) channels, the α2δ proteins modulate membrane trafficking of the channels and their localization to specific presynaptic sites. Following nerve injury, upregulation of the α2δ-1 subunit in sensory dorsal root ganglion neurons contributes to the generation of chronic pain states; however, very little is known about the underlying molecular mechanisms. Here we show that the increased expression of α2δ-1 in rat sensory neurons leads to prolonged Ca(2+) responses evoked by membrane depolarization. This mechanism is coupled to CaV2.2 channel-mediated responses, as it is blocked by a ω-conotoxin GVIA application. Once initiated, the prolonged Ca(2+) transients are not dependent on extracellular Ca(2+) and do not require Ca(2+) release from the endoplasmic reticulum. The selective inhibition of mitochondrial Ca(2+) uptake demonstrates that α2δ-1-mediated prolonged Ca(2+) signals are buffered by mitochondria, preferentially activated by Ca(2+) influx through CaV2.2 channels. Thus, by controlling channel abundance at the plasma membrane, the α2δ-1 subunit has a major impact on the organization of depolarization-induced intracellular Ca(2+) signaling in dorsal root ganglion neurons.


Assuntos
Canais de Cálcio Tipo N/genética , Sinalização do Cálcio/fisiologia , Células Receptoras Sensoriais/metabolismo , Regulação para Cima/fisiologia , Animais , Animais Recém-Nascidos , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo N/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Feminino , Gânglios Espinais/citologia , Indóis/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Nifedipino/farmacologia , Cloreto de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Regulação para Cima/efeitos dos fármacos , ômega-Conotoxina GVIA/farmacologia
3.
Nat Commun ; 5: 3628, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24709664

RESUMO

Fragile X syndrome (FXS), the most common heritable form of mental retardation, is characterized by synaptic dysfunction. Synaptic transmission depends critically on presynaptic calcium entry via voltage-gated calcium (Ca(V)) channels. Here we show that the functional expression of neuronal N-type Ca(V) channels (Ca(V)2.2) is regulated by fragile X mental retardation protein (FMRP). We find that FMRP knockdown in dorsal root ganglion neurons increases Ca(V) channel density in somata and in presynaptic terminals. We then show that FMRP controls Ca(V)2.2 surface expression by targeting the channels to the proteasome for degradation. The interaction between FMRP and Ca(V)2.2 occurs between the carboxy-terminal domain of FMRP and domains of Ca(V)2.2 known to interact with the neurotransmitter release machinery. Finally, we show that FMRP controls synaptic exocytosis via Ca(V)2.2 channels. Our data indicate that FMRP is a potent regulator of presynaptic activity, and its loss is likely to contribute to synaptic dysfunction in FXS.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Exocitose/fisiologia , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Humanos , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA