RESUMO
With an ever-increasing amount of (meta)genomic data being deposited in sequence databases, (meta)genome mining for natural product biosynthetic pathways occupies a critical role in the discovery of novel pharmaceutical drugs, crop protection agents and biomaterials. The genes that encode these pathways are often organised into biosynthetic gene clusters (BGCs). In 2015, we defined the Minimum Information about a Biosynthetic Gene cluster (MIBiG): a standardised data format that describes the minimally required information to uniquely characterise a BGC. We simultaneously constructed an accompanying online database of BGCs, which has since been widely used by the community as a reference dataset for BGCs and was expanded to 2021 entries in 2019 (MIBiG 2.0). Here, we describe MIBiG 3.0, a database update comprising large-scale validation and re-annotation of existing entries and 661 new entries. Particular attention was paid to the annotation of compound structures and biological activities, as well as protein domain selectivities. Together, these new features keep the database up-to-date, and will provide new opportunities for the scientific community to use its freely available data, e.g. for the training of new machine learning models to predict sequence-structure-function relationships for diverse natural products. MIBiG 3.0 is accessible online at https://mibig.secondarymetabolites.org/.
Assuntos
Genoma , Genômica , Família Multigênica , Vias Biossintéticas/genéticaRESUMO
Certain cyanobacteria of the secondary metabolite-rich order Nostocales can establish permanent symbioses with a large number of cycads, by accumulating in their coralloid roots and shifting their metabolism to dinitrogen fixation. Here, we report the discovery of two new lipoglycopeptides, desmamides A (1) and B (2), together with their aglycone desmamide C (3), from the nostocalean cyanobacterium Desmonostoc muscorum LEGE 12446 isolated from a cycad (Cycas revoluta) coralloid root. The chemical structures of the compounds were elucidated using a combination of 1D and 2D NMR spectroscopy and mass spectrometry. The desmamides are decapeptides featuring O-glycosylation of tyrosine (in 1 and 2) and an unusual 3,5-dihydroxy-2-methyldecanoic acid residue. The biosynthesis of the desmamides was studied by substrate incubation experiments and bioinformatics. We describe herein the dsm biosynthetic gene cluster and propose it to be associated with desmamide production. The discovery of this class of very abundant (>1.5% d.w.) bacterial lipoglycopeptides paves the way for exploration of their potential role in root endosymbiosis.
Assuntos
Cianobactérias , Cycas , Cianobactérias/metabolismo , Cycas/microbiologia , Lipoglicopeptídeos/metabolismo , Raízes de Plantas/microbiologia , SimbioseRESUMO
BACKGROUND: Halogenation is a recurring feature in natural products, especially those from marine organisms. The selectivity with which halogenating enzymes act on their substrates renders halogenases interesting targets for biocatalyst development. Recently, CylC - the first predicted dimetal-carboxylate halogenase to be characterized - was shown to regio- and stereoselectively install a chlorine atom onto an unactivated carbon center during cylindrocyclophane biosynthesis. Homologs of CylC are also found in other characterized cyanobacterial secondary metabolite biosynthetic gene clusters. Due to its novelty in biological catalysis, selectivity and ability to perform C-H activation, this halogenase class is of considerable fundamental and applied interest. The study of CylC-like enzymes will provide insights into substrate scope, mechanism and catalytic partners, and will also enable engineering these biocatalysts for similar or additional C-H activating functions. Still, little is known regarding the diversity and distribution of these enzymes. RESULTS: In this study, we used both genome mining and PCR-based screening to explore the genetic diversity of CylC homologs and their distribution in bacteria. While we found non-cyanobacterial homologs of these enzymes to be rare, we identified a large number of genes encoding CylC-like enzymes in publicly available cyanobacterial genomes and in our in-house culture collection of cyanobacteria. Genes encoding CylC homologs are widely distributed throughout the cyanobacterial tree of life, within biosynthetic gene clusters of distinct architectures (combination of unique gene groups). These enzymes are found in a variety of biosynthetic contexts, which include fatty-acid activating enzymes, type I or type III polyketide synthases, dialkylresorcinol-generating enzymes, monooxygenases or Rieske proteins. Our study also reveals that dimetal-carboxylate halogenases are among the most abundant types of halogenating enzymes in the phylum Cyanobacteria. CONCLUSIONS: Our data show that dimetal-carboxylate halogenases are widely distributed throughout the Cyanobacteria phylum and that BGCs encoding CylC homologs are diverse and mostly uncharacterized. This work will help guide the search for new halogenating biocatalysts and natural product scaffolds.
Assuntos
Proteínas de Bactérias , Cianobactérias , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cianobactérias/genética , Cianobactérias/metabolismo , Halogenação , Humanos , Família Multigênica , Recidiva Local de NeoplasiaRESUMO
Lactylates are an important group of molecules in the food and cosmetic industries. A series of natural halogenated 1-lactylates, chlorosphaerolactylates (1-4), were recently reported from Sphaerospermopsis sp. LEGE 00249. Here, we identify the cly biosynthetic gene cluster, containing all the necessary functionalities for the biosynthesis of the natural lactylates, based on in silico analyses. Using a combination of stable isotope incorporation experiments and bioinformatic analysis, we propose that dodecanoic acid and pyruvate are the key building blocks in the biosynthesis of 1-4. We additionally report minor analogues of these molecules with varying alkyl chains. This work paves the way to accessing industrially relevant lactylates through pathway engineering.
Assuntos
Vias Biossintéticas , Cianobactérias/metabolismo , Ésteres/química , Ácido Láctico/química , Ácidos Láuricos/química , Biologia Computacional , Halogenação , Estrutura Molecular , Família Multigênica , Ácido PirúvicoRESUMO
Lipids are one of the primary metabolites of microalgae and cyanobacteria, which enrich their utility in the pharmaceutical, feed, cosmetic, and chemistry sectors. This work describes the isolation, structural elucidation, and the antibiotic and antibiofilm activities of diverse lipids produced by different microalgae and cyanobacteria strains from two European collections (ACOI and LEGE-CC). Three microalgae strains and one cyanobacteria strain were selected for their antibacterial and/or antibiofilm activity after the screening of about 600 strains carried out under the NoMorFilm European project. The total organic extracts were firstly fractionated using solid phase extraction methods, and the minimum inhibitory concentration and minimal biofilm inhibitory concentration against an array of human pathogens were determined. The isolation was carried out by bioassay-guided HPLC-DAD purification, and the structure of the isolated molecules responsible for the observed activities was determined by HPLC-HRESIMS and NMR methods. Sulfoquinovosyldiacylglycerol, monogalactosylmonoacylglycerol, sulfoquinovosylmonoacylglycerol, α-linolenic acid, hexadeca-4,7,10,13-tetraenoic acid (HDTA), palmitoleic acid, and lysophosphatidylcholine were found among the different active sub-fractions selected. In conclusion, cyanobacteria and microalgae produce a great variety of lipids with antibiotic and antibiofilm activity against the most important pathogens causing severe infections in humans. The use of these lipids in clinical treatments alone or in combination with antibiotics may provide an alternative to the current treatments.
Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Cianobactérias , Lipídeos/farmacologia , Microalgas , Animais , Antibacterianos/química , Organismos Aquáticos , Lipídeos/química , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacosRESUMO
Four natural lactylates of chlorinated fatty acids, chlorosphaerolactylates A-D (1-4), were isolated from the methanolic extract of the cyanobacterium Sphaerospermopsis sp. LEGE 00249 through a combination of bioassay-guided and MS-guided approaches. Compounds 1-4 are esters of (mono-, di-, or tri)chlorinated lauric acid and lactic acid, whose structures were assigned on the basis of spectrometric and spectroscopic methods inclusive of 1D and 2D NMR experiments. High-resolution mass-spectrometry data sets also demonstrated the existence of other minor components that were identified as chlorosphaero(bis)lactylate analogues. The chlorosphaerolactylates were tested for potential antibacterial, antifungal, and antibiofilm properties using bacterial and fungal clinical isolates. Compounds 1-4 showed a weak inhibitory effect on the growth of Staphylococcus aureus S54F9 and Candida parapsilosis SMI416, as well as on the biofilm formation of coagulase-negative Staphylococcus hominis FI31.
Assuntos
Anti-Infecciosos/química , Cianobactérias/química , Ácidos Graxos/química , Antibacterianos/farmacologia , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Ácidos Graxos/isolamento & purificação , Ácidos Graxos/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus hominis/efeitos dos fármacosRESUMO
The McMurdo Dry Valleys constitute the largest ice-free region of Antarctica and one of the most extreme deserts on Earth. Despite the low temperatures, dry and poor soils and katabatic winds, some microbes are able to take advantage of endolithic microenvironments, inhabiting the pore spaces of soil and constituting photosynthesis-based communities. We isolated a green microalga, Endolithella mcmurdoensis gen. et sp. nov, from an endolithic sandstone sample collected in the McMurdo Dry Valleys (Victoria Land, East Antarctica) during the K020 expedition, in January 2013. The single non-axenic isolate (E. mcmurdoensis LEGE Z-009) exhibits cup-shaped chloroplasts, electron-dense bodies, and polyphosphate granules but our analysis did not reveal any diagnostic morphological characters. On the basis of phylogenetic analysis of the 18S rRNA (SSU) gene, the isolate was found to represent a new genus within the family Chlorellaceae.
Assuntos
Chlorella , Extremófilos , Regiões Antárticas , Filogenia , RNA Ribossômico 18S , Análise de Sequência de DNARESUMO
Small, single-celled planktonic cyanobacteria are ubiquitous in the world's oceans yet tend not to be perceived as secondary metabolite-rich organisms. Here we report the isolation and structure elucidation of hierridin C, a minor metabolite obtained from the cultured picocyanobacterium Cyanobium sp. LEGE 06113. We describe a simple, straightforward synthetic route to the scarcely produced hierridins that relies on a key regioselective halogenation step. In addition, we show that these compounds originate from a type III PKS pathway and that similar biosynthetic gene clusters are found in a variety of bacterial genomes, most notably those of the globally distributed picocyanobacteria genera Prochlorococcus, Cyanobium and Synechococcus.
Assuntos
Anisóis/química , Cianobactérias/metabolismo , Resorcinóis/metabolismo , Anisóis/metabolismo , Anisóis/farmacologia , Cianobactérias/genética , Genoma Bacteriano , Família MultigênicaRESUMO
Previous studies have demonstrated the modulation of glutathione transferases (GSTs) induced by microcystin (MC) alone or in combination with other cyanobacterial secondary metabolites in bivalves. However, interspecies information about which and how GST isoforms are affected by these secondary metabolites is still scarce, especially considering the dynamic process involving their uptake and elimination routes. In this context, the role of GSTs gene expression changes in response to a toxic Microcystis aeruginosa extract were examined for Mytilus galloprovincialis and Ruditapes philippinarum during exposure and recovery phases. The expression levels of sigma 1, sigma 2, pi and mu-class GST genes were analyzed in the hepatopancreas of both bivalve species during cyanobacteria extract exposure (24 h) and post-exposure (24 and 72 h). Only a significant induction of sigma 1-class GST expression was observed for R. philippinarum upon 24-hour exposure of both bivalve species to Microcystis extract. During the recovery phase, GST transcriptional changes for M. galloprovincialis were characterized by an early induction (24 h) of sigma 1 and sigma 2 transcripts. On the other hand, GST transcriptional changes for R. philippinarum during post-exposure phase were characterized by an early induction (24 h) of sigma 1 and mu transcripts and a later induction (72 h) of the four analyzed GST transcripts. Such differences reflect variable GST response mechanisms to cope with MC-producing cyanobacterial blooms exposure between these two bivalve species, revealing a higher sensitivity of R. philippinarum to Microcystis-induced stress than M. galloprovincialis. The results also suggest a much higher level of activity of the GST detoxification system during the recovery phase compared to the period of the stress exposure for both bivalve species.
Assuntos
Glutationa Transferase/genética , Microcistinas/toxicidade , Mytilus/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Hepatopâncreas , Microcystis , Mytilus/efeitos dos fármacos , Testes de ToxicidadeRESUMO
Fatty acid-derived alkyl chains are often found in natural products, where they can exert a number of different functions, most notably biological membrane interactions. Such alkyl chains are difficult to modify regio- and stereoselectively, since most positions are distant from any directing functional group. Chemical and biochemical diversification of these moieties is therefore a challenge, and most organisms do not modify alkyl moieties to a great extent. Still, one particular group of microorgansims - cyanobacteria - display not only a large number of fatty acid-incorporating natural products, but also modify these to a great extent. Here, we provide an overview of the unique fatty acid metabolism of cyanobacteria in the context of natural products biosynthesis. We cover the diverse range of fatty acid incorporation mechanisms that these organisms use to recruit and commit fatty acids to natural products biosynthetic pathways. A variety of alkyl chain decorations and modifications that are found in cyanobacterial natural products are highlighted, illustrating the rich enzymatic arsenal that these organisms have evolved to diversify fatty acid-derived alkyl chains.
Assuntos
Produtos Biológicos , Cianobactérias , Ácidos Graxos/metabolismo , Produtos Biológicos/química , Cianobactérias/químicaRESUMO
Microginins are a large family of cyanobacterial lipopeptide protease inhibitors. A hybrid polyketide synthase/non-ribosomal peptide synthetase biosynthetic gene cluster (BGC) found in several microginin-producing strainsâmicâwas proposed to encode the production of microginins, based on bioinformatic analysis. Here, we explored a cyanobacterium, Microcystis aeruginosa LEGE 91341, which contains a mic BGC, to discover 12 new microginin variants. The new compounds contain uncommon amino acids, namely, homophenylalanine (Hphe), homotyrosine (Htyr), or methylproline, as well as a 3-aminodecanoic acid (Ada) residue, which in some variants was chlorinated at its terminal methyl group. We have used direct pathway cloning (DiPaC) to heterologously express the mic BGC from M. aeruginosa LEGE 91341 in Escherichia coli, which led to the production of several microginins. This proved that the mic BGC is, in fact, responsible for the biosynthesis of microginins and paves the way to accessing new variants from (meta)genome data or through pathway engineering.
Assuntos
Cianobactérias , Microcystis , Microcystis/genética , Microcystis/química , Microcystis/metabolismo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Cianobactérias/metabolismo , Inibidores de Proteases/metabolismo , Lipopeptídeos/metabolismo , Aminoácidos/metabolismoRESUMO
Microbial natural products are compounds with unique chemical structures and diverse biological activities. Cyanobacteria commonly possess a wide range of biosynthetic gene clusters (BGCs) to produce natural products. Although natural product BGCs have been found in almost all cyanobacterial genomes, little attention has been given in cyanobacterial research to the partitioning of these biosynthetic pathways in chromosomes and plasmids. Cyanobacterial plasmids are believed to disperse several natural product BGCs, such as toxins, by plasmids through horizontal gene transfer. Therefore, plasmids may confer the ability to produce toxins and may play a role in the evolution of diverse natural product BGCs from cyanobacteria. Here, we performed an analysis of the distribution of natural product BGCs in 185 genomes and mapped the presence of genes involved in the conjugation in plasmids. The 185 analyzed genomes revealed 1817 natural products BGCs. Individual genomes contained 1-42 biosynthetic pathways (mean 8), 95% of which were present in chromosomes and the remaining 5% in plasmids. Of the 424 analyzed cyanobacterial plasmids, 12% contained homologs of genes involved in conjugation and natural product biosynthetic pathways. Among the biosynthetic pathways in plasmids, manual curation identified those to produce aeruginosin, anabaenopeptin, ambiguine, cryptophycin, hassallidin, geosmin, and microcystin. These compounds are known toxins, protease inhibitors, odorous compounds, antimicrobials, and antitumorals. The present study provides in silico evidence using genome mining that plasmids may be involved in the distribution of natural product BGCs in cyanobacteria. Consequently, cyanobacterial plasmids have importance in the context of biotechnology, water management, and public health risk assessment. Future research should explore in vivo conjugation and the end products of natural product BGCs in plasmids via chemical analyses.
RESUMO
Edible Llayta are cyanobacterial colonies consumed in the Andes highlands. Llayta and four isolated cyanobacteria strains were tested for cyanotoxins (microcystin, nodularin, cylindrospermopsin, saxitoxin and ß-N-methylamino-L-alanine-BMAA) using molecular and chemical methods. All isolates were free of target genes involved in toxin biosynthesis. Only DNA from Llayta amplified the mcyE gene. Presence of microcystin-LR and BMAA in Llayta extracts was discarded by LC/MS analyses. The analysed Llayta colonies have an incomplete microcystin biosynthetic pathway and are a safe food ingredient.
Assuntos
Toxinas Bacterianas/análise , Suplementos Nutricionais/análise , Nostoc/metabolismo , Altitude , Nostoc/classificação , Nostoc/genética , Áreas AlagadasRESUMO
Human poisoning by microcystin has been recorded in many countries, including Brazil, where fatal cases have already occurred. The Amazon River is the main source of drinking water in municipalities such as Macapá, where there is no monitoring of cyanobacteria and cyanotoxins. This study investigated the presence of cyanobacteria and cyanotoxins in samples from a drinking water treatment plant (DWTP) that catches water from the Amazon River. The toxin analyses employed ELISA, LC/MS, and molecular screening for genes involved in the production of cyanotoxins. The sampling was carried out monthly from April 2015 to April 2016 at the intake (raw water) and exit (treated water) of the DWTP. This study reports the first detection of microcystin-LR (MC-LR) in the Amazon River, the world's largest river, and in its treated water destined for drinking water purposes in Macapá, Brazil. The cyanobacterial density and MC-LR concentration were both low during the year. However, Limnothrix planctonica showed a density peak (± 900 cells mL-1) in the quarter of June-August 2015, when MC-LR was registered (2.1 µg L-1). Statistical analyses indicate that L. planctonica may produce the microcystin.
Assuntos
Água Potável/química , Microcistinas/análise , Rios/química , Purificação da Água/métodos , Brasil , Cromatografia Líquida/métodos , Cidades , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Toxinas Marinhas , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodosRESUMO
Bacterial biofilms are complex biological systems that are difficult to eradicate at a medical, industrial, or environmental level. Biofilms confer bacteria protection against external factors and antimicrobial treatments. Taking into account that about 80% of human infections are caused by bacterial biofilms, the eradication of these structures is a great priority. Biofilms are resistant to old-generation antibiotics, which has led to the search for new antimicrobials from different sources, including deep oceans/seas. In this study, 675 extracts obtained from 225 cyanobacteria and microalgae species (11 phyla and 6 samples belonging to unknown group) were obtained from different culture collections: The Blue Biotechnology and Ecotoxicology Culture Collection (LEGE-CC), the Coimbra Collection of Algae (ACOI) from Portugal, and the Roscoff Culture Collection (RCC) from France. The largest number of samples was made up of the microalgae phylum Chlorophyta (270) followed by Cyanobacteria (261). To obtain a large range of new bioactive compounds, a method involving three consecutive extractions (hexane, ethyl acetate, and methanol) was used. The antibiofilm activity of extracts was determined against seven different bacterial species and two Candida strains in terms of minimal biofilm inhibitory concentration (MBIC). The highest biofilm inhibition rates (%) were achieved against Candida albicans and Enterobacter cloacae. Charophyta, Chlorophyta, and Cyanobacteria were the most effective against all microorganisms. In particular, extracts of Cercozoa phylum presented the lowest MBIC50 and MBIC90 values for all the strains except C. albicans.
RESUMO
Cyanobacteria are a well-known source of bioproducts which renders culturable strains a valuable resource for biotechnology purposes. We describe here the establishment of a cyanobacterial culture collection (CC) and present the first version of the strain catalog and its online database (http://lege.ciimar.up.pt/). The LEGE CC holds 386 strains, mainly collected in coastal (48%), estuarine (11%), and fresh (34%) water bodies, for the most part from Portugal (84%). By following the most recent taxonomic classification, LEGE CC strains were classified into at least 46 genera from six orders (41% belong to the Synechococcales), several of them are unique among the phylogenetic diversity of the cyanobacteria. For all strains, primary data were obtained and secondary data were surveyed and reviewed, which can be reached through the strain sheets either in the catalog or in the online database. An overview on the notable biodiversity of LEGE CC strains is showcased, including a searchable phylogenetic tree and images for all strains. With this work, 80% of the LEGE CC strains have now their 16S rRNA gene sequences deposited in GenBank. Also, based in primary data, it is demonstrated that several LEGE CC strains are a promising source of extracellular polymeric substances (EPS). Through a review of previously published data, it is exposed that LEGE CC strains have the potential or actual capacity to produce a variety of biotechnologically interesting compounds, including common cyanotoxins or unprecedented bioactive molecules. Phylogenetic diversity of LEGE CC strains does not entirely reflect chemodiversity. Further bioprospecting should, therefore, account for strain specificity of the valuable cyanobacterial holdings of LEGE CC.
RESUMO
Microbial mats are complex, micro-scale ecosystems that can be found in a wide range of environments. In the top layer of photosynthetic mats from hypersaline environments, a large diversity of cyanobacteria typically predominates. With the aim of strengthening the knowledge on the cyanobacterial diversity present in the coastal lagoon system of Araruama (state of Rio de Janeiro, Brazil), we have characterized three mat samples by means of a polyphasic approach. We have used morphological and molecular data obtained by culture-dependent and -independent methods. Moreover, we have compared different classification methodologies and discussed the outcomes, challenges, and pitfalls of these methods. Overall, we show that Araruama's lagoons harbor a high cyanobacterial diversity. Thirty-six unique morphospecies could be differentiated, which increases by more than 15% the number of morphospecies and genera already reported for the entire Araruama system. Morphology-based data were compared with the 16S rRNA gene phylogeny derived from isolate sequences and environmental sequences obtained by PCR-DGGE and pyrosequencing. Most of the 48 phylotypes could be associated with the observed morphospecies at the order level. More than one third of the sequences demonstrated to be closely affiliated (best BLAST hit results of ≥99%) with cyanobacteria from ecologically similar habitats. Some sequences had no close relatives in the public databases, including one from an isolate, being placed as "loner" sequences within different orders. This hints at hidden cyanobacterial diversity in the mats of the Araruama system, while reinforcing the relevance of using complementary approaches to study cyanobacterial diversity.