Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Biopolymers ; : e23624, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39257344

RESUMO

The rational use of autoclaved starches in food applications is difficult because there is a lack of information on their structure-functionality relationship. The novelty of this research relies on disclosing such an association. Hylon V starch was autoclaved at 105, 120, and 135°C to investigate its crystalline and double-helical features and its relationship with functionality. In autoclaved Hylon V starch, interactions of amylopectin and amylose improved while the crystalline regions decreased. The degree of double helices (DD) decreased after autoclaving at 105°C and the degree of order (DO) increased after treatment at 120 and 135°C. The water solubility index (WSI) (4.63-6.38%) and swelling power (SP) (4.39-7.1 g/g) increased when the temperature increased. On the other hand, water (103.49-225.01%) and oil (61.91-94.53%) holding capacity (WHC and OHC, respectively) increased after autoclaving treatment, although the values decreased with the treatment intensity. The functional properties were affected when the structure changed as a function of the treatment temperatures. PCA analysis showed that WSI and SP of autoclaved Hylon V starch were associated with a high DD, with better compaction, and with stronger amylopectin-amylose interactions. WHC and OHC were associated with better crystallinity, stronger interactions of amylopectin and amylose, and heterogeneous double-helical crystallites. These findings are useful for understanding the structure-functionality relationship of autoclaved Hylon V starch and pave the way for future research regarding the effects of its incorporation on the properties of food matrices such as bread, yogurt, cakes, and pudding.

2.
J Environ Manage ; 351: 119812, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38100865

RESUMO

Phosphorus (P) is an essential element for life that must be managed sustainably. The institutional framework for P recovery from wastewater includes policies, regulations, plans, and actions that promote the recovery, recycling, and safe use of this element, aimed at moving toward more sustainable nutrient management and environmental protection. This review analyzes the status of the institutional framework for P recovery from wastewater in different countries around the world. Europe is the continent where the most progress has been made in terms of legislation. Countries such as Germany, the Netherlands, Austria, and Denmark have already implemented policies and regulations that promote environmental protection, as well as P recovery and reuse. In other parts of the world, such as the United States, China, and Japan, there have also been significant advances in promoting the closure of the P cycle, with the implementation of advanced recovery technologies in wastewater treatment plants and regional/national action plans. By contrast, in Latin America there has been little progress in P treatment and recovery, with a weak regulatory framework, unclear goals, and insufficient allocation of techno-economic resources. In this context, it is necessary to reinforce the comprehensive institutional framework, which covers technological aspects, economic incentives, political agreements, and regulations, to promote the sustainable management of this valuable resource.


Assuntos
Fósforo , Águas Residuárias , Conservação dos Recursos Naturais , Políticas , Reciclagem , Eliminação de Resíduos Líquidos
3.
Molecules ; 29(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38731632

RESUMO

This manuscript details a comprehensive investigation into the synthesis, structural characterization, thermal stability, and optical properties of nickel-containing hybrid perovskites, namely CH3NH3NiCl3, CsNiCl3, and CH3NH3NiBrCl2. The focal point of this study is to unravel the intricate crystal structures, thermal behaviors, and optical characteristics of these materials, thereby elucidating their potential application in energy conversion and storage technologies. X-ray powder diffraction measurements confirm that CH3NH3NiCl3 adopts a crystal structure within the Cmcm space group, while CsNiCl3 is organized in the P63/mmc space group, as reported previously. Such structural diversity underscores the complex nature of these perovskites and their potential for tailored applications. Thermal analysis further reveals the stability of CH3NH3NiCl3 and CH3NH3NiBrCl2, which begin to decompose at 260 °C and 295 °C, respectively. The optical absorption properties of these perovskites studied by UV-VIS-NIR spectroscopy revealed the bands characteristic of Ni2+ ions in an octahedral environment. Notably, these absorption bands exhibit subtle shifts upon bromide substitution, suggesting that optical properties can be finely tuned through halide modification. Such tunability is paramount for the design and development of materials with specific optical requirements. By offering a detailed examination of these properties, the study lays the groundwork for future advancements in material science, particularly in the development of innovative materials for sustainable energy technologies.

4.
Inorg Chem ; 62(42): 17046-17051, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37814970

RESUMO

We report the synthesis, characterization, and photoelectric and electrochemical properties of (CH3NH3)2Zn1-xCoxBr4 (x = 0.0, 0.3, 0.5, 0.7, and 1.0) samples. X-ray powder and single-crystal diffraction confirm the formation of solid solution across the entire range. Additionally, as the cobalt concentration increases, the crystallinity of the samples decreases, as indicated by the powder diffraction patterns. All samples remain stable up to 560 K, beyond which they decompose into CH3NH3Br and the respective bromide. The semiconductor behavior of the compounds is confirmed through optical absorption measurements, and band gap values are determined by using the Tauc method from diffuse reflectance spectra. Raman spectroscopy reveals a slight redshift in all vibration modes with increasing cobalt content. Finally, photovoltaic measurements on solar cells constructed with (MA)2CoBr4 perovskite exhibit modest performance, and electrochemical measurements indicate that the compound with the composition (MA)2Zn0.3Co0.7Br4 exhibits the highest current for electrochemical water reduction during oxygen evolution.

5.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834484

RESUMO

Neuroinflammation is a common event in degenerative diseases of the central and peripheral nervous system, triggered by alterations in the immune system or inflammatory cascade. The pathophysiology of these disorders is multifactorial, whereby the therapy available has low clinical efficacy. This review propounds the relationship between the deregulation of T helper cells and hypoxia, mainly Th17 and HIF-1α molecular pathways, events that are involved in the occurrence of the neuroinflammation. The clinical expression of neuroinflammation is included in prevalent pathologies such as multiple sclerosis, Guillain-Barré syndrome, and Alzheimer's disease, among others. In addition, therapeutic targets are analyzed in relation to the pathways that induced neuroinflammation.


Assuntos
Síndrome de Guillain-Barré , Doenças Neuroinflamatórias , Humanos , Síndrome de Guillain-Barré/patologia , Hipóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Células Th17
6.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108713

RESUMO

Acute lymphoblastic leukemia (ALL) is the most common cancer among children worldwide, characterized by an overproduction of undifferentiated lymphoblasts in the bone marrow. The treatment of choice for this disease is the enzyme L-asparaginase (ASNase) from bacterial sources. ASNase hydrolyzes circulating L-asparagine in plasma, leading to starvation of leukemic cells. The ASNase formulations of E. coli and E. chrysanthemi present notorious adverse effects, especially the immunogenicity they generate, which undermine both their effectiveness as drugs and patient safety. In this study, we developed a humanized chimeric enzyme from E. coli L-asparaginase which would reduce the immunological problems associated with current L-asparaginase therapy. For these, the immunogenic epitopes of E. coli L-asparaginase (PDB: 3ECA) were determined and replaced with those of the less immunogenic Homo sapiens asparaginase (PDB:4O0H). The structures were modeled using the Pymol software and the chimeric enzyme was modeled using the SWISS-MODEL service. A humanized chimeric enzyme with four subunits similar to the template structure was obtained, and the presence of asparaginase enzymatic activity was predicted by protein-ligand docking.


Assuntos
Antineoplásicos , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Asparaginase/genética , Asparaginase/uso terapêutico , Escherichia coli/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Asparagina , Proteínas Recombinantes de Fusão/uso terapêutico , Antineoplásicos/uso terapêutico
7.
Artigo em Inglês | MEDLINE | ID: mdl-37791682

RESUMO

In this study, we emphasize the critical role of sample pretreatment. We report on the behavior of NdFeB magnet samples exposed to four different acid media for digestion. NdFeB magnets are becoming a significant source of neodymium, a rare-earth element critical to many technologies and a potential substitute for traditional mining of the element. To address this, we meticulously tested nitric acid, hydrochloric acid, acetic acid, and citric acid, all at a concentration of 1.6 M, as economical and environmentally friendly alternatives to the concentrated mineral acids commonly used in the leaching of these materials. The pivotal stage involves the initial characterization of samples in the solid state using SEM-EDX and XPS analysis to obtain their initial composition. Subsequently, the samples are dissolved in the four aforementioned acids. Finally, neodymium is quantified using ICP-OES. Throughout our investigation, we evaluated some analytical parameters to determine the best candidate for performing the digestion, including time, limits of detection and quantification, accuracy, recovery of spike samples, and robustness. After careful consideration, we unequivocally conclude that 1.6 M nitric acid stands out as the optimal choice for dissolving NdFeB magnet samples, with the pretreatment of the samples being the critical aspect of this report.


Assuntos
Metais Terras Raras , Neodímio , Neodímio/química , Imãs , Espectrofotometria Atômica
8.
Rev Med Chil ; 150(10): 1351-1360, 2022 Oct.
Artigo em Espanhol | MEDLINE | ID: mdl-37358094

RESUMO

The systemic effects of oxygen deficiency or excess are not thoroughly described. Knowledge is evolving towards the description of beneficial and detrimental effects of both extremes of partial pressure of oxygen (PaO2). The cellular and tissue mediators derived from the modulation of the oxidative tone and the production of reactive oxygen species (ROS) are widely characterized biochemically, but the pathophysiological characterization is lacking. Preclinical models support the use of hypobaric hypoxia preconditioning, based on its beneficial effects on ventricular function or its reduction in infarct size. A very important use of oxygen today is in commercial diving. However, novel clinical indications for oxygen such as the healing of diabetic foot ulcers and bone injury caused by radiotherapy are increasingly used. On the other hand, the modulation of the hypoxic response associated with exposure to high altitude environments (hypobaric), favors Chile and its highlands as a natural laboratory to determine certain cardiovascular, cerebral and metabolic responses in the resident population. Also, the consequences of the intermittent exposure to high altitudes in workers also deserves attention. This review discusses the physiopathological response to hypo and hyperoxemia, associated with environments with different oxygen concentrations, and brings back the concept of oxygen as a pharmacological mediator in extreme environments such as high altitudes and hyperbaric medicine in divers, decompression sickness, osteonecrosis associated with radiotherapy and sudden sensorineural hearing loss.


Assuntos
Doença da Descompressão , Mergulho , Perda Auditiva Neurossensorial , Humanos , Oxigênio , Doença da Descompressão/etiologia , Hipóxia/complicações , Hipóxia/metabolismo , Altitude
9.
Inorg Chem ; 59(14): 9471-9475, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32633127

RESUMO

The new compound (CH3NH3)3Tl2Cl9 was synthesized and fully characterized. X-ray photoelectron spectroscopy and Raman spectroscopy are consistent with the crystal structure solved by single-crystal X-ray diffraction. This compound is a semiconductor with a measured band gap of Eg = 2.91 eV. It is the first thallium-based hybrid perovskite and shows remarkably high stability to ambient conditions.

10.
Pediatr Transplant ; 24(3): e13695, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32166868

RESUMO

Short telomere syndromes are a heterogenous spectrum of disorders leading to premature cellular aging. These may involve bone marrow failure, adult-onset idiopathic pulmonary fibrosis, and liver disease, and classical entities such as dyskeratosis congenita. We report a patient who presented with common variable immunodeficiency at 3 years of age and autoimmune cytopenias at 8 years of age. He was found to have short telomeres, and genetic testing confirmed a hemizygous mutation NM_001363.4: c.-142C > G in DKC1 gene. He subsequently developed cirrhosis with severe portal hypertension and hepatopulmonary syndrome, prompting liver transplantation at 11 years of age. He remains well 10 years after transplant with no progression of bone marrow failure or progressive lung disease. In conclusion, short telomere syndromes should be considered as a potential cause of pediatric liver disease of unknown etiology, and in severe cases, isolated liver transplantation may be both appropriate and successful.


Assuntos
Proteínas de Ciclo Celular/genética , Falência Renal Crônica/cirurgia , Transplante de Fígado , Mutação , Proteínas Nucleares/genética , Encurtamento do Telômero/genética , Transtornos da Insuficiência da Medula Óssea , Criança , Marcadores Genéticos , Síndrome Hepatopulmonar/etiologia , Síndrome Hepatopulmonar/cirurgia , Humanos , Falência Renal Crônica/etiologia , Cirrose Hepática/etiologia , Cirrose Hepática/cirurgia , Masculino , Síndrome
11.
Int J Mol Sci ; 19(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373484

RESUMO

More than 140 million people live and works (in a chronic or intermittent form) above 2500 m worldwide and 35 million live in the Andean Mountains. Furthermore, in Chile, it is estimated that 55,000 persons work in high altitude shifts, where stays at lowlands and interspersed with working stays at highlands. Acute exposure to high altitude has been shown to induce oxidative stress in healthy human lowlanders, due to an increase in free radical formation and a decrease in antioxidant capacity. However, in animal models, intermittent hypoxia (IH) induce preconditioning, like responses and cardioprotection. Here, we aimed to describe in a rat model the responses on cardiac and vascular function to 4 cycles of intermittent hypobaric hypoxia (IHH). Twelve adult Wistar rats were randomly divided into two equal groups, a four-cycle of IHH, and a normobaric hypoxic control. Intermittent hypoxia was induced in a hypobaric chamber in four continuous cycles (1 cycle = 4 days hypoxia + 4 days normoxia), reaching a barometric pressure equivalent to 4600 m of altitude (428 Torr). At the end of the first and fourth cycle, cardiac structural, and functional variables were determined by echocardiography. Thereafter, ex vivo vascular function and biomechanical properties were determined in femoral arteries by wire myography. We further measured cardiac oxidative stress biomarkers (4-Hydroxy-nonenal, HNE; nytrotirosine, NT), reactive oxygen species (ROS) sources (NADPH and mitochondrial), and antioxidant enzymes activity (catalase, CAT; glutathione peroxidase, GPx, and superoxide dismutase, SOD). Our results show a higher ejection and shortening fraction of the left ventricle function by the end of the 4th cycle. Further, femoral vessels showed an improvement of vasodilator capacity and diminished stiffening. Cardiac tissue presented a higher expression of antioxidant enzymes and mitochondrial ROS formation in IHH, as compared with normobaric hypoxic controls. IHH exposure determines a preconditioning effect on the heart and femoral artery, both at structural and functional levels, associated with the induction of antioxidant defence mechanisms. However, mitochondrial ROS generation was increased in cardiac tissue. These findings suggest that initial states of IHH are beneficial for cardiovascular function and protection.


Assuntos
Hipóxia/fisiopatologia , Estresse Oxidativo , Vasodilatação , Função Ventricular Esquerda , Adaptação Fisiológica , Animais , Hipóxia/metabolismo , Masculino , Mitocôndrias Musculares/metabolismo , Miocárdio/metabolismo , Ratos , Ratos Wistar
12.
Appl Environ Microbiol ; 82(4): 1015-1022, 2016 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637599

RESUMO

Acidophilic organisms, such as Acidithiobacillus ferrooxidans, possess high-level resistance to copper and other metals. A. ferrooxidans contains canonical copper resistance determinants present in other bacteria, such as CopA ATPases and RND efflux pumps, but these components do not entirely explain its high metal tolerance. The aim of this study was to find other possible copper resistance determinants in this bacterium. Transcriptional expression of A. ferrooxidans genes coding for a cytoplasmic CopZ-like copper-binding chaperone and the periplasmic copper-binding proteins rusticyanin and AcoP, which form part of an iron-oxidizing supercomplex, was found to increase when the microorganism was grown in the presence of copper. All of these proteins conferred more resistance to copper when expressed heterologously in a copper-sensitive Escherichia coli strain. This effect was absent when site-directed-mutation mutants of these proteins with altered copper-binding sites were used in this metal sensitivity assay. These results strongly suggest that the three copper-binding proteins analyzed here are copper resistance determinants in this extremophile and contribute to the high-level metal resistance of this industrially important biomining bacterium.


Assuntos
Acidithiobacillus/efeitos dos fármacos , Acidithiobacillus/metabolismo , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Cobre/toxicidade , Farmacorresistência Bacteriana , Proteínas de Bactérias/genética , Sítios de Ligação , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Mutagênese Sítio-Dirigida , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
13.
Inorg Chem ; 55(9): 4498-503, 2016 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-27064595

RESUMO

We report the high-pressure high-temperature synthesis (P = 15 GPa, T = 1300 K) of BaGe3(tI32) adopting a CaGe3-type crystal structure. Bonding analysis reveals layers of covalently bonded germanium dumbbells being involved in multicenter Ba-Ge interactions. Physical measurements evidence metal-type electrical conductivity and a transition to a superconducting state at 6.5 K. Chemical bonding and physical properties of the new modification are discussed in comparison to the earlier described hexagonal form BaGe3(hP8) with a columnar arrangement of Ge3 triangles.

14.
Exp Cell Res ; 334(2): 270-82, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25845496

RESUMO

Cholesterol plays an important role in inducing pancreatic ß-cell dysfunction, characterized by an impaired insulin secretory response to glucose, representing a hallmark of the transition from pre-diabetes to diabetes. 3,4 dihydroxyphenylacetic acid (ES) is a scarcely studied microbiota-derived metabolite of quercetin with antioxidant properties. The aim of this study was to determine the protective effect of ES against apoptosis, mitochondrial dysfunction and oxidative stress induced by cholesterol in Min6 pancreatic ß-cells. Cholesterol decreased viability, induced apoptosis and mitochondrial dysfunction by reducing complex I activity, mitochondrial membrane potential, ATP levels and oxygen consumption. Cholesterol promoted oxidative stress by increasing cellular and mitochondrial reactive oxygen species and lipid peroxidation and decreasing antioxidant enzyme activities; in addition, it slightly increased Nrf2 translocation to the nucleus. These events resulted in the impairment of the glucose-induced insulin secretion. ES increased Nrf2 translocation to the nucleus and protected pancreatic ß-cells against impaired insulin secretion induced by cholesterol by preventing oxidative stress, apoptosis and mitochondrial dysfunction. Nrf2 activation seems to be involved in the mechanisms underlying the antioxidant protection exerted by ES in addition to preventing the disruption of antioxidant enzymatic defenses. Although additional in vivo experiments are required, this metabolite is suggested as a promising drug target for the prevention of the pathological development from a pre-diabetic to a diabetic state.


Assuntos
Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Ácido 3,4-Di-Hidroxifenilacético/farmacologia , Colesterol/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Quercetina/metabolismo , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos , Relação Estrutura-Atividade
15.
J Biomed Sci ; 22: 8, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613908

RESUMO

BACKGROUND: Intermittent hypobaric hypoxia (IHH) induces changes in the redox status and structure in rat testis. These effects may be present in people at high altitudes, such as athletes and miners. Polyunsaturated fatty acids (PUFA) can be effective in counteracting these oxidative modifications due to their antioxidants properties. The aim of the work was to test whether PUFA supplementation attenuates oxidative damage in testis by reinforcing the antioxidant defense system. The animals were divided into four groups (7 rats per group): normobaric normoxia (~750 tor; pO2 156 mmHg; Nx); Nx + PUFA, supplemented with PUFA (DHA: EPA = 3:1; 0.3 g kg(-1) of body weight per day); hypoxic hypoxia (~428 tor; pO2 90 mmHg; Hx) and, Hx + PUFA. The hypoxic groups were exposed in 4 cycles to 96 h of HH followed by 96 h of normobaric normoxia for 32 days. Total antioxidant capacity (FRAP) and lipid peroxidation (malondialdehyde, MDA) in plasma and reduced (GSH)/oxidized glutathione (GSSG) ratio, tissue lipid peroxidation (TBARS) and antioxidant enzymes activity were assessed at the end of the study in testis. Also, SIRTUIN 1 and HIF-1 protein expression in testis were determined. RESULTS: IHH increased lipid peroxidation in plasma and HIF-1 protein levels in testis. In addition, IHH reduced FRAP levels in plasma, antioxidant enzymes activities and SIRTUIN 1 protein levels in testis. PUFA supplementation attenuated these effects, inducing the increases in FRAP, in the antioxidant enzymes activity and HIF-1 levels. CONCLUSIONS: These results suggest that the IHH model induces a prooxidant status in plasma and testis. The molecular protective effect of PUFA may involve the induction of an antioxidant mechanism.


Assuntos
Antioxidantes/metabolismo , Ácidos Graxos Insaturados/farmacologia , Hipóxia/fisiopatologia , Testículo/efeitos dos fármacos , Testículo/lesões , Animais , Dieta , Suplementos Nutricionais/análise , Modelos Animais de Doenças , Ácidos Graxos Insaturados/administração & dosagem , Masculino , Ratos , Ratos Wistar
16.
Inorg Chem ; 54(3): 1019-25, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25495634

RESUMO

A new crystalline form of BaGe(5) was obtained at a pressure of 15(2) GPa in the temperature range from 1000(100) to 1200(120) K. Single-crystal electron and powder X-ray diffraction patterns indicate a body-centered orthorhombic structure (space group Imma, Pearson notation oI24) with unit cell parameters a = 8.3421(8) Å, b = 4.8728(5) Å, and c = 13.7202(9) Å. The crystal structure of hp-BaGe(5) consists of four-bonded Ge atoms forming complex layers with Ge-Ge contacts between 2.560(6) and 2.684(3) Å; the Ba atoms are coordinated by 15 Ge neighbors in the range from 3.341(6) to 3.739(4) Å. Analysis of the chemical bonding using quantum chemical techniques in real space reveal charge transfer from the Ba cations to the anionic Ge species. Ge atoms having nearly tetrahedral environments show an electron-localizability-based oxidation number close to 0; the four-bonded Ge atoms with a Ψ-pyramidal environment adopt a value close to 1-. In agreement with the calculated electronic density of states, the compound is a metallic conductor (electrical resistivity of ca. 240 µΩ cm at 300 K), and magnetic susceptibility measurements evidence diamagnetic behavior with χ(0) = -95 × 10(-6) emu mol(-1).

17.
Mar Drugs ; 13(2): 838-60, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25658050

RESUMO

Intermittent hypobaric hypoxia (IH) is linked with oxidative stress, impairing cardiac function. However, early IH also activate cardio-protective mechanisms. Omega 3 fatty acids (Ω3) induce cardioprotection by reducing infarct size and reinforcing antioxidant defenses. The aim of this work was to determine the combined effects of IH and Ω3 on cardiac function; oxidative balance and inflammatory state. Twenty-eight rats were randomly divided into four groups: normobaric normoxia (N); N + Ω3 (0.3 g·kg-1·day-1); IH; and IH + Ω3. IH was induced by 4 intercalate periods of hypoxia (4 days)-normoxia (4 days) in a hypobaric chamber during 32 days. At the end of the exposure, hearts were mounted in a Langendorff system and subjected to 30 min of ischemia followed by 120 min of reperfusion. In addition, we determined HIF-1α and ATP levels, as well as oxidative stress by malondialdehyde and nitrotyrosine quantification. Further, the expression of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase was determined. NF-kappaB and myeloperoxidase levels were assessed in the hearts. Relative to N hearts, IH improved left ventricular function (Left ventricular developed pressure: N; 21.8 ± 3.4 vs. IH; 42.8 ± 7.1 mmHg; p < 0.05); reduced oxidative stress (Malondialdehyde: N; 14.4 ± 1.8 vs. IH; 7.3 ± 2.1 µmol/mg prot.; p < 0.05); and increased antioxidant enzymes expression. Supplementation with Ω3 induces similar responses as IH group. Our findings suggest that both, IH and Ω3 in an independent manner, induce functional improvement by antioxidant and anti-inflammatory mechanisms, establishing cardio-protection.


Assuntos
Doença da Altitude/tratamento farmacológico , Antioxidantes/farmacologia , Cardiotônicos/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Hipóxia/tratamento farmacológico , Trifosfato de Adenosina/metabolismo , Doença da Altitude/metabolismo , Animais , Suplementos Nutricionais , Metabolismo Energético/efeitos dos fármacos , Coração/efeitos dos fármacos , Hipóxia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Técnicas In Vitro , Inflamação/metabolismo , Inflamação/prevenção & controle , Masculino , Miocárdio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Função Ventricular Esquerda/efeitos dos fármacos
18.
Inorg Chem ; 53(24): 12699-705, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25426760

RESUMO

We report the high-pressure high-temperature synthesis of the germanium-based framework compounds BaGe6 (P = 15 GPa, T = 1073 K) and BaGe(6-x) (P = 10 GPa, T = 1073 K) which are metastable at ambient conditions. In BaGe(6-x), partial fragmentation of the BaGe6 network involves incommensurate modulations of both atomic positions and site occupancy. Bonding analysis in direct space reveals that the defect formation in BaGe(6-x) is associated with the establishment of free electron pairs around the defects. In accordance with the electron precise composition of BaGe(6-x) for x = 0.5, physical measurements evidence semiconducting electron transport properties which are combined with low thermal conductivity.

19.
Cell Biochem Funct ; 32(3): 274-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24166314

RESUMO

Currently, controversial clinical data about the protective effects in the consumption of n-3 polyunsaturated fatty acids (PUFAs) in ischaemic heart diseases exist. Improved myocardial resistance to ischaemia-reperfusion (IR) injury results in non-lethal myocardial infarction, which is a relevant factor in the myocardial function. We hypothesized that chronic supplementation with PUFAs reduced infarct size (IS) and induced an improvement on oxidative stress-related parameters in IR model. Rats were supplemented with two doses of PUFAs D1 (n = 7) (0.6 g kg(-1) d(-1) ) and D2 (n = 7) (1.2 g kg(-1) d(-1) ) for 8 weeks. Control group (n = 7) received only standard diet. In ex vivo model, all rat hearts were subjected to 30 min of global ischaemia followed by 120 min of reperfusion. The IS and left ventricular function were assessed. Lipid peroxidation, reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio and antioxidant enzyme activity were measured in the whole heart. The results show a reduction in IS in a dose-dependent manner with PUFAs D1 (30.6%) and D2 (48.5%) and higher values of left ventricular developed pressure, at the end of the reperfusion, for each dose, respectively (p < 0.05). The two PUFAs groups showed higher values of GSH/GSSG ratio and lipid peroxidation, and higher values of activity of antioxidant enzymes catalase, superoxide dismutase and glutathione peroxidase at basal condition (p < 0.05). At the end of reperfusion, the GSH/GSSG ratio and antioxidants enzyme activity did not show a significant drop in their values (p > 0.05). These findings suggested that the supplementation with PUFAs induces cardioprotection against IR injury, associated with reinforcement of the antioxidant defense system.


Assuntos
Antioxidantes/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Dieta , Hemodinâmica , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Estresse Oxidativo , Ratos
20.
ACS Omega ; 9(18): 20129-20134, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38737033

RESUMO

Lithium carbonate (Li2CO3) is a critical raw material in cathode material production, a core of Li-ion battery manufacturing. The quality of this material significantly influences its market value, with impurities potentially affecting Li-ion battery performance and longevity. While the importance of impurity analysis is acknowledged by suppliers and manufacturers of battery materials, reports on elemental analysis of trace impurities in Li2CO3 salt are scarce. This study aims to establish and validate an analytical methodology for detecting and quantifying trace impurities in Li2CO3 salt. Various analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDX), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectroscopy (ICP-OES), were employed to analyze synthetic and processed lithium salt. X-ray diffraction patterns of Li2CO3 were collected via step-scanning mode in the 5-80° 2θ range. SEM-EDX was utilized for particle morphology and quantitative impurity analysis, with samples localized on copper tape. XPS equipped with a hemispherical electron analyzer was employed to analyze the surface composition of the salt. For ICP-OES analysis, a known amount of lithium salt was subjected to acid digestion and dilution with ultrapure water. Multielemental standard solutions were prepared, including elements such as Al, Cd, Cu, Fe, Mn, Ni, Pb, Si, Zn, Ca, K, Mg, Na, and S. Results confirmed the presence of the zabuyelite phase in XRD analysis, corresponding to the natural form of lithium carbonate. SEM-EDX mapping revealed impurities of Si and Al, with low relative quantification values of 0.12% and 0.14%, respectively. XPS identified eight potential impurity elements, including S, Cr, Fe, Cl, F, Zn, Mg, and Na, alongside Li, O, and C. Regarding ICP-OES analysis, performance parameters such as linearity, limit of detection (LOD), and quantification (LOQ), variance, and recovery were evaluated for analytical validation. ICP-OES results demonstrated high linearity (>0.99), with LOD and LOQ values ranging from 0.001 to 0.800 ppm and 0.003 to 1.1 ppm, respectively, for different elements. The recovery rate exceeded 90%. In conclusion, the precision of the new ICP-OES methodology renders it suitable for identifying and characterizing Li2CO3 impurities. It can effectively complement solid-state techniques such as XRD, SEM-EDX, and XPS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA