Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 29(9): 2927-2935, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29952551

RESUMO

By using a carbon-coated anodic aluminum oxide (CAAO) film as a monolithic porous electrode for the immobilization of Trametes laccases (LACs), an attempt is made to control the orientation of LAC molecules toward the electrode surface simply by applying an electric potential to the CAAO film. Because the resulting film is characterized by a myriad of open, simple, and straight nanochannels with diameters as large as 40 nm, the O2 diffusion problem in pores is minimized, thereby making it possible to highlight the effect of such orientation on the electrocatalytic activity as a biocathode. It has been evidenced that LAC molecules are favorably oriented for a smooth electron transfer from the electrode when the LACs are immobilized with applying a positive voltage to the electrode, and such favorable orientation exhibits 3.7-times higher electrocatalytic activity than unfavorable orientation. Furthermore, the orientation mechanism has been rationally explained in terms of local surface chemistry on a LAC molecule.


Assuntos
Carbono/química , Eletrodos , Lacase/metabolismo , Propriedades de Superfície , Trametes/enzimologia , Catálise , Enzimas Imobilizadas/química , Nanoestruturas
2.
Langmuir ; 32(8): 2127-35, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26859703

RESUMO

The main aim of the present work is to precisely understand the sole effect of nitrogen doping on the electrochemical performance of porous carbon materials. To achieve this objective, the whole surface of mesoporous silica (SBA-15) was coated with a thin layer of carbon (about 0.4 nm) with and without N-doping by using acetonitrile and acetylene chemical vapor deposition, respectively. The resulting N-doped and nondoped carbon-coated silica samples have mesopore structures identical to those in the original SBA-15, and they are practically the same in terms of not only the pore size and pore structure but also the particle size distribution and particle morphology, with the exception of N-doping, which makes them unique model materials to extract the sole effect of nitrogen on the performances of electrochemical capacitors and electrocatalytic oxygen reduction. Moreover, the outstanding features of the carbon-coated silica samples allow even a quantitative understanding of the pseudocapacitance induced by nitrogen functionalities on the carbon surface in an acidic aqueous electrolyte.

3.
Nanomaterials (Basel) ; 14(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38869557

RESUMO

The preparation of 2H-phase MoS2 thin nanosheets by electrochemical delamination remains a challenge, despite numerous efforts in this direction. In this work, by choosing appropriate intercalating cations for cathodic delamination, the insertion process was facilitated, leading to a higher degree of exfoliation while maintaining the original 2H-phase of the starting bulk MoS2 material. Specifically, trimethylalkylammonium cations were tested as electrolytes, outperforming their bulkier tetraalkylammonium counterparts, which have been the focus of past studies. The performance of novel electrochemically derived 2H-phase MoS2 nanosheets as electrode material for electrochemical energy storage in lithium-ion batteries was investigated. The lower thickness and thus higher flexibility of cathodically exfoliated MoS2 promoted better electrochemical performance compared to liquid-phase and ultrasonically assisted exfoliated MoS2, both in terms of capacity (447 vs. 371 mA·h·g-1 at 0.2 A·g-1) and rate capability (30% vs. 8% capacity retained when the current density was increased from 0.2 A·g-1 to 5 A·g-1), as well as cycle life (44% vs. 17% capacity retention at 0.2 A·g-1 after 580 cycles). Overall, the present work provides a convenient route for obtaining MoS2 thin nanosheets for their advantageous use as anode material for lithium storage.

4.
Chem Commun (Camb) ; 58(50): 7086-7089, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35665789

RESUMO

Microporous polymers with exposed C60 surfaces have been synthesized by a new pathway of crosslinking fullerenol and terephthaloyl chloride or 1,3,5-benzenetricarbonyl trichloride via esterification. The resulting polymers are insoluble solids containing a large ratio of C60 with hydroxy groups and possess micropores with high specific surface area up to 657 m2 g-1. The microporous polymers thus obtained exhibit enhanced hydrogen spillover, which is a unique property of the C60 surface.

5.
J Colloid Interface Sci ; 605: 513-527, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34340036

RESUMO

Hyper-crosslinked polymers (HCPs) have been produced by the Friedel-Crafts reaction using anthracene, benzene, carbazole or dibenzothiophene as precursors and dimethoxymethane as crosslinker, and the effect of graphene oxide (GO) addition has been studied. The resulting HCPs were highly microporous with BET areas (ABET) between 590 and 1120 m2g-1. The benzene-derived HCP (B1FeM2) and the corresponding composite with GO (B1FM2-GO) exhibited the highest ABET and were selected to study their hydrogen adsorption capacities in the pressure range of 0.1 - 14 MPa at 77 K. The maximum H2 excess uptake was 2.1 and 2.0 wt% for B1FeM2 and B1FeM2-GO, respectively, at 4 MPa and 77 K. The addition of GO reduced the specific surface area but increased the density of the resultant HCP-GO composites, which is beneficial for practical applications and proves that materials giving higher gravimetric storage capacities are not necessarily those that offer higher volumetric capacities. H2 adsorption-desorption cycles up to 14 MPa showed irreversible deformation of both HCP and HCP-GO materials, which calls into question their application for hydrogen adsorption at pressures above 4 MPa.


Assuntos
Hidrogênio , Polímeros , Adsorção , Benzeno
6.
Nanomaterials (Basel) ; 11(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34835658

RESUMO

In this work, we have described the characterization of hybrid silica nanoparticles of 50 nm size, showing outstanding size homogeneity, a large surface area, and remarkable CO2 sorption/desorption capabilities. A wide battery of techniques was conducted ranging from spectroscopies such as: UV-Vis and IR, to microscopies (SEM, AFM) and CO2 sorption/desorption isotherms, thus with the purpose of the full characterization of the material. The bare SiO2 (50 nm) nanoparticles modified with 3-aminopropyl (triethoxysilane), APTES@SiO2 (50 nm), show a remarkable CO2 sequestration enhancement compared to the pristine material (0.57 vs. 0.80 mmol/g respectively at 50 °C). Furthermore, when comparing them to their 200 nm size counterparts (SiO2 (200 nm) and APTES@SiO2 (200 nm)), there is a marked CO2 capture increment as a consequence of their significantly larger micropore volume (0.25 cm3/g). Additionally, ideal absorbed solution theory (IAST) was conducted to determine the CO2/N2 selectivity at 25 and 50 °C of the four materials of study, which turned out to be >70, being in the range of performance of the most efficient microporous materials reported to date, even surpassing those based on silica.

7.
Chem Commun (Camb) ; 53(100): 13348-13351, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-29192698

RESUMO

Boron and nitrogen co-doped ordered microporous carbons with high surface areas are obtained by using NaY zeolite as a hard template and an ionic liquid, 1-ethyl-3-methylimidazolium tetracyanoborate (EMIT), as a BN source. An acetylene-gas supply during a pyrolysis is effective to avoid the unfavourable reaction of zeolite and EMIT.

8.
ChemSusChem ; 6(8): 1406-13, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23843334

RESUMO

High-performance carbon materials for energy storage applications have been obtained by using poly(m-phenylene isophthalamide), PMIA, as a precursor through the chemical activation of the carbonized aramid fiber by using KOH. The yield of the process of activation was remarkably high (25-40 wt%), resulting in activated carbon fibers (ACFs) with ultrahigh surface areas, over 3000 m(2) g(-1) , and pore volumes exceeding 1.50 cm(3) g(-1) , keeping intact the fibrous morphology. The porous structure and the surface chemical properties could easily be controlled through the conditions of activation. The PMIA-derived ACFs were tested in two types of energy storage applications. At -196 °C and 1 bar, H2 uptake values of approximately 3 t% were obtained, which, in combination with the textural properties, rendered it a good candidate for H2 adsorption at high pressure and temperature. The performance of the ACFs as electrodes for electrochemical supercapacitors was also investigated. Specific capacitance values between 297 and 531 g(-1) at 50 mA g(-1) were obtained in aqueous electrolyte (1 H2 SO4 ), showing different behaviors depending on the surface chemical properties.


Assuntos
Amidas/química , Carbono/química , Fontes Geradoras de Energia , Ácidos Ftálicos/química , Fibra de Carbono , Fenômenos Químicos , Eletroquímica , Hidrogênio/química , Cloreto de Potássio/química , Propriedades de Superfície
9.
J Colloid Interface Sci ; 361(1): 307-15, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21669440

RESUMO

Activated carbon fibers (ACFs) were prepared by chemical activation of poly(p-phenylene terephthalamide (PPTA) with phosphoric acid, with a particular focus on the effects of impregnation ratio and carbonization temperature on both surface chemistry and porous texture. Thermogravimetric studies of the pyrolysis of PPTA impregnated with different amounts of phosphoric acid indicated that this reagent has a strong influence on the thermal degradation of the polymer, lowering the decomposition temperature and increasing the carbon yield. As concerns surface chemistry, TPD and chemical analysis results indicated that the addition of phosphoric acid increases the concentration of oxygenated surface groups, with a maximum at an impregnation ratio of 100 wt.%. The resulting materials present uncommon properties, namely a large amount of oxygen- and phosphorus-containing surface groups and a high nitrogen content. Porosity development following H(3)PO(4) activation was very significant, with values close to 1700 m(2)/g and 0.80 cm(3)/g being reached for the BET surface area and total pore volume, respectively. The pore size distributions remained confined to the micropore and narrow mesopore (<10 nm) range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA