Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 412(6): 1303-1315, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31965249

RESUMO

High-resolution mass spectrometry (HRMS) enables rapid chemical annotation via accurate mass measurements and matching of experimentally derived spectra with reference spectra. Reference libraries are generated from chemical standards and are therefore limited in size relative to known chemical space. To address this limitation, in silico spectra (i.e., MS/MS or MS2 spectra), predicted via Competitive Fragmentation Modeling-ID (CFM-ID) algorithms, were generated for compounds within the U.S. Environmental Protection Agency's (EPA) Distributed Structure-Searchable Toxicity (DSSTox) database (totaling, at the time of analysis, ~ 765,000 substances). Experimental spectra from EPA's Non-Targeted Analysis Collaborative Trial (ENTACT) mixtures (n = 10) were then used to evaluate the performance of the in silico spectra. Overall, MS2 spectra were acquired for 377 unique compounds from the ENTACT mixtures. Approximately 53% of these compounds were correctly identified using a commercial reference library, whereas up to 50% were correctly identified as the top hit using the in silico library. Together, the reference and in silico libraries were able to correctly identify 73% of the 377 ENTACT substances. When using the in silico spectra for candidate filtering, an examination of binary classifiers showed a true positive rate (TPR) of 0.90 associated with false positive rates (FPRs) of 0.10 to 0.85, depending on the sample and method of candidate filtering. Taken together, these findings show the abilities of in silico spectra to correctly identify true positives in complex samples (at rates comparable to those observed with reference spectra), and efficiently filter large numbers of potential false positives from further consideration. Graphical abstract.

2.
Bioinformatics ; 29(3): 402-3, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23202747

RESUMO

MOTIVATION: Scientists and regulators are often faced with complex decisions, where use of scarce resources must be prioritized using collections of diverse information. The Toxicological Prioritization Index (ToxPi™) was developed to enable integration of multiple sources of evidence on exposure and/or safety, transformed into transparent visual rankings to facilitate decision making. The rankings and associated graphical profiles can be used to prioritize resources in various decision contexts, such as testing chemical toxicity or assessing similarity of predicted compound bioactivity profiles. The amount and types of information available to decision makers are increasing exponentially, while the complex decisions must rely on specialized domain knowledge across multiple criteria of varying importance. Thus, the ToxPi bridges a gap, combining rigorous aggregation of evidence with ease of communication to stakeholders. RESULTS: An interactive ToxPi graphical user interface (GUI) application has been implemented to allow straightforward decision support across a variety of decision-making contexts in environmental health. The GUI allows users to easily import and recombine data, then analyze, visualize, highlight, export and communicate ToxPi results. It also provides a statistical metric of stability for both individual ToxPi scores and relative prioritized ranks. AVAILABILITY: The ToxPi GUI application, complete user manual and example data files are freely available from http://comptox.unc.edu/toxpi.php.


Assuntos
Software , Testes de Toxicidade/métodos , Gráficos por Computador , Interface Usuário-Computador
3.
Int J Mol Sci ; 13(2): 1805-1831, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22408426

RESUMO

Computational toxicology combines data from high-throughput test methods, chemical structure analyses and other biological domains (e.g., genes, proteins, cells, tissues) with the goals of predicting and understanding the underlying mechanistic causes of chemical toxicity and for predicting toxicity of new chemicals and products. A key feature of such approaches is their reliance on knowledge extracted from large collections of data and data sets in computable formats. The U.S. Environmental Protection Agency (EPA) has developed a large data resource called ACToR (Aggregated Computational Toxicology Resource) to support these data-intensive efforts. ACToR comprises four main repositories: core ACToR (chemical identifiers and structures, and summary data on hazard, exposure, use, and other domains), ToxRefDB (Toxicity Reference Database, a compilation of detailed in vivo toxicity data from guideline studies), ExpoCastDB (detailed human exposure data from observational studies of selected chemicals), and ToxCastDB (data from high-throughput screening programs, including links to underlying biological information related to genes and pathways). The EPA DSSTox (Distributed Structure-Searchable Toxicity) program provides expert-reviewed chemical structures and associated information for these and other high-interest public inventories. Overall, the ACToR system contains information on about 400,000 chemicals from 1100 different sources. The entire system is built using open source tools and is freely available to download. This review describes the organization of the data repository and provides selected examples of use cases.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais , Ecotoxicologia/métodos , United States Environmental Protection Agency , Algoritmos , Bases de Dados Factuais/normas , Bases de Dados Factuais/provisão & distribuição , Ecotoxicologia/organização & administração , Poluentes Ambientais/toxicidade , Humanos , Software , Estados Unidos , United States Environmental Protection Agency/organização & administração
4.
Sci Data ; 6(1): 141, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375670

RESUMO

Confident identification of unknown chemicals in high resolution mass spectrometry (HRMS) screening studies requires cohesive workflows and complementary data, tools, and software. Chemistry databases, screening libraries, and chemical metadata have become fixtures in identification workflows. To increase confidence in compound identifications, the use of structural fragmentation data collected via tandem mass spectrometry (MS/MS or MS2) is vital. However, the availability of empirically collected MS/MS data for identification of unknowns is limited. Researchers have therefore turned to in silico generation of MS/MS data for use in HRMS-based screening studies. This paper describes the generation en masse of predicted MS/MS spectra for the entirety of the US EPA's DSSTox database using competitive fragmentation modelling and a freely available open source tool, CFM-ID. The generated dataset comprises predicted MS/MS spectra for ~700,000 structures, and mappings between predicted spectra, structures, associated substances, and chemical metadata. Together, these resources facilitate improved compound identifications in HRMS screening studies. These data are accessible via an SQL database, a comma-separated export file (.csv), and EPA's CompTox Chemicals Dashboard.

5.
Toxicol Appl Pharmacol ; 233(1): 7-13, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18671997

RESUMO

ACToR (Aggregated Computational Toxicology Resource) is a database and set of software applications that bring into one central location many types and sources of data on environmental chemicals. Currently, the ACToR chemical database contains information on chemical structure, in vitro bioassays and in vivo toxicology assays derived from more than 150 sources including the U.S. Environmental Protection Agency (EPA), Centers for Disease Control (CDC), U.S. Food and Drug Administration (FDA), National Institutes of Health (NIH), state agencies, corresponding government agencies in Canada, Europe and Japan, universities, the World Health Organization (WHO) and non-governmental organizations (NGOs). At the EPA National Center for Computational Toxicology, ACToR helps manage large data sets being used in a high-throughput environmental chemical screening and prioritization program called ToxCast.


Assuntos
Biologia Computacional/métodos , Bases de Dados Factuais/normas , Poluentes Ambientais/toxicidade , Biologia Computacional/normas , Biologia Computacional/estatística & dados numéricos , Biologia Computacional/tendências , Bases de Dados Factuais/estatística & dados numéricos , Bases de Dados Factuais/tendências , Exposição Ambiental/efeitos adversos , Exposição Ambiental/normas , Exposição Ambiental/estatística & dados numéricos , Poluentes Ambientais/química , Órgãos Governamentais/normas , Órgãos Governamentais/estatística & dados numéricos , Órgãos Governamentais/tendências , Estados Unidos , United States Environmental Protection Agency/normas , United States Environmental Protection Agency/estatística & dados numéricos , United States Environmental Protection Agency/tendências
6.
Toxicol Rep ; 2: 228-237, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-28962356

RESUMO

Humans are exposed to thousands of chemicals in the workplace, home, and via air, water, food, and soil. A major challenge in estimating chemical exposures is to understand which chemicals are present in these media and microenvironments. Here we describe the Chemical/Product Categories Database (CPCat), a new, publically available (http://actor.epa.gov/cpcat) database of information on chemicals mapped to "use categories" describing the usage or function of the chemical. CPCat was created by combining multiple and diverse sources of data on consumer- and industrial-process based chemical uses from regulatory agencies, manufacturers, and retailers in various countries. The database uses a controlled vocabulary of 833 terms and a novel nomenclature to capture and streamline descriptors of chemical use for 43,596 chemicals from the various sources. Examples of potential applications of CPCat are provided, including identifying chemicals to which children may be exposed and to support prioritization of chemicals for toxicity screening. CPCat is expected to be a valuable resource for regulators, risk assessors, and exposure scientists to identify potential sources of human exposures and exposure pathways, particularly for use in high-throughput chemical exposure assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA