Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Physiol ; 593(20): 4677-88, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282186

RESUMO

It remains unclear whether improvements in peak oxygen uptake (V̇(O2peak)) following endurance training (ET) are primarily determined by central and/or peripheral adaptations. Herein, we tested the hypothesis that the improvement in V̇(O2peak) following 6 weeks of ET is mainly determined by haematological rather than skeletal muscle adaptations. Sixteen untrained healthy male volunteers (age = 25 ± 4 years, V̇(O2peak) = 3.5 ± 0.5 l min(-1)) underwent supervised ET (6 weeks, 3-4 sessions per week). V̇(O2peak), peak cardiac output (Q̇(peak)), haemoglobin mass (Hb(mass)) and blood volumes were assessed prior to and following ET. Skeletal muscle biopsies were analysed for mitochondrial volume density (Mito(VD)), capillarity, fibre types and respiratory capacity (OXPHOS). After the post-ET assessment, red blood cell volume (RBCV) was re-established at the pre-ET level by phlebotomy and V̇(O2peak) and Q̇(peak) were measured again. We speculated that the contribution of skeletal muscle adaptations to the ET-induced increase in V̇(O2peak) would be revealed when controlling for haematological adaptations. V̇(O2peak) and Q̇(peak) were increased (P < 0.05) following ET (9 ± 8 and 7 ± 6%, respectively) and decreased (P < 0.05) after phlebotomy (-7 ± 7 and -10 ± 7%). RBCV, plasma volume and Hb(mass) all increased (P < 0.05) after ET (8 ± 4, 4 ± 6 and 6 ± 5%). As for skeletal muscle adaptations, capillary-to-fibre ratio and total Mito(VD) increased (P < 0.05) following ET (18 ± 16 and 43 ± 30%), but OXPHOS remained unaltered. Through stepwise multiple regression analysis, Q̇(peak), RBCV and Hb(mass) were found to be independent predictors of V̇(O2peak). In conclusion, the improvement in V̇(O2peak) following 6 weeks of ET is primarily attributed to increases in Q̇(peak) and oxygen-carrying capacity of blood in untrained healthy young subjects.


Assuntos
Volume Sanguíneo/fisiologia , Exercício Físico/fisiologia , Hemoglobinas/fisiologia , Consumo de Oxigênio/fisiologia , Adaptação Fisiológica , Adulto , Hexoquinase/metabolismo , Humanos , L-Lactato Desidrogenase/metabolismo , Masculino , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/fisiologia , Resistência Física , Adulto Jovem
2.
J Neurotrauma ; 40(9-10): 952-964, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36029211

RESUMO

After incomplete spinal cord injury (iSCI), the control of lower extremity movements may be affected by impairments in descending corticospinal tract function. Previous iSCI studies demonstrated relatively well-preserved movement control during simple alternating dorsiflections and plantar flexions albeit with severely reduced motor strength and range of motion. This task, however, required comparably limited fine motor control, impeding the sensitivity to assess the modulatory capacity of corticospinal control. Therefore, we introduced a more challenging ankle motor task necessitating complex and dynamic feedback-based movement adjustments to modulate corticospinal drive. Nineteen individuals with iSCI and 22 control subjects performed two different ankle movement tasks: (1) a regular, auditory-guided ankle movement task at a constant frequency as baseline assessment and (2) an irregular, visually guided ankle movement task following a pre-defined trajectory as a more challenging motor task. Both tasks were performed separately and in a randomized order. Electromyography (EMG) and kinematic data were recorded. The EMG frequency characteristics were investigated using wavelet transformations. Control participants exhibited a shift of relative EMG intensity from higher (>100 Hz) to lower frequencies (20-60 Hz) comparing the regular with the irregular movement task. There is evidence that EMG activity within these lower frequencies comprise information on corticospinal drive. The EMG frequency shift was less pronounced for the less impaired leg and absent for the more impaired leg of individuals with iSCI. The precision error during the irregular task was significantly higher for individuals with iSCI (more impaired leg: 12.34 ± 11.14%; less impaired leg: 6.93 ± 2.74%) compared with control participants (4.10 ± 0.84%). These results, along with the walking performance, correlated well with the delta frequency shift between the regular and irregular movement task in the 38 Hz band (corticospinal drive frequency) in the iSCI group, suggesting that task performance is related to the capacity to modulate corticospinal control. The irregular movement task holds promise as a tool for revealing further insights into corticospinal control of single-joint movements. It may serve as a surrogate marker for the assessment of modulatory capacity and the integrity of corticospinal control in individuals with iSCI early after injury and throughout rehabilitation.


Assuntos
Tornozelo , Traumatismos da Medula Espinal , Humanos , Caminhada , Eletromiografia , Movimento
3.
Neurorehabil Neural Repair ; 37(5): 316-327, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37039327

RESUMO

BACKGROUND: Accurate prediction of walking function after a traumatic spinal cord injury (SCI) is crucial for an appropriate tailoring and application of therapeutical interventions. Long-term outcome of ambulation is strongly related to residual muscle function acutely after injury and its recovery potential. The identification of the underlying determinants of ambulation, however, remains a challenging task in SCI, a neurological disorder presented with heterogeneous clinical manifestations and recovery trajectories. OBJECTIVES: Stratification of walking function and determination of its most relevant underlying muscle functions based on stratified homogeneous patient subgroups. METHODS: Data from individuals with paraplegic SCI were used to develop a prediction-based stratification model, applying unbiased recursive partitioning conditional inference tree (URP-CTREE). The primary outcome was the 6-minute walk test at 6 months after injury. Standardized neurological assessments ≤15 days after injury were chosen as predictors. Resulting subgroups were incorporated into a subsequent node-specific analysis to attribute the role of individual lower extremity myotomes for the prognosis of walking function. RESULTS: Using URP-CTREE, the study group of 361 SCI patients was divided into 8 homogeneous subgroups. The node specific analysis uncovered that proximal myotomes L2 and L3 were driving factors for the differentiation between walkers and non-walkers. Distal myotomes L4-S1 were revealed to be responsible for the prognostic distinction of indoor and outdoor walkers (with and without aids). CONCLUSION: Stratification of a heterogeneous population with paraplegic SCI into more homogeneous subgroups, combined with the identification of underlying muscle functions prospectively determining the walking outcome, enable potential benefit for application in clinical trials and practice.


Assuntos
Doenças do Sistema Nervoso , Traumatismos da Medula Espinal , Humanos , Paraplegia , Caminhada/fisiologia , Prognóstico , Recuperação de Função Fisiológica
4.
Neurorehabil Neural Repair ; 36(4-5): 274-285, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35164574

RESUMO

BACKGROUND: New therapeutic approaches in neurological disorders are progressing into clinical development. Past failures in translational research have underlined the critical importance of selecting appropriate inclusion criteria and primary outcomes. Narrow inclusion criteria provide sensitivity, but increase trial duration and cost to the point of infeasibility, while broader requirements amplify confounding, increasing the risk of trial failure. This dilemma is perhaps most pronounced in spinal cord injury (SCI), but applies to all neurological disorders with low frequency and/or heterogeneous clinical manifestations. OBJECTIVE: Stratification of homogeneous patient cohorts to enable the design of clinical trials with broad inclusion criteria. METHODS: Prospectively-gathered data from patients with acute cervical SCI were analysed using an unbiased recursive partitioning conditional inference tree (URP-CTREE) approach. Performance in the 6-minute walk test at 6 months after injury was classified based on standardized neurological assessments within the first 15 days of injury. Functional and neurological outcomes were tracked throughout rehabilitation up to 6 months after injury. RESULTS: URP-CTREE identified homogeneous outcome cohorts in a study group of 309 SCI patients. These cohorts were validated by an internal, yet independent, validation group of 172 patients. The study group cohorts identified demonstrated distinct recovery profiles throughout rehabilitation. The baseline characteristics of the analysed groups were compared to a reference group of 477 patients. CONCLUSION: URP-CTREE enables inclusive trial design by revealing the distribution of outcome cohorts, discerning distinct recovery profiles and projecting potential patient enrolment by providing estimates of the relative frequencies of cohorts to improve the design of clinical trials in SCI and beyond.


Assuntos
Doenças do Sistema Nervoso , Traumatismos da Medula Espinal , Humanos , Recuperação de Função Fisiológica , Traumatismos da Medula Espinal/reabilitação , Caminhada
5.
BMJ Open ; 11(9): e047670, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593490

RESUMO

INTRODUCTION: Spinal cord injury (SCI) is a devastating condition with immediate impact on the individual's health and quality of life. Major functional recovery reaches a plateau 3-4 months after injury despite intensive rehabilitative training. To enhance training efficacy and improve long-term outcomes, the combination of rehabilitation with electrical modulation of the spinal cord and brain has recently aroused scientific interest with encouraging results. The mesencephalic locomotor region (MLR), an evolutionarily conserved brainstem locomotor command and control centre, is considered a promising target for deep brain stimulation (DBS) in patients with SCI. Experiments showed that MLR-DBS can induce locomotion in rats with spinal white matter destructions of >85%. METHODS AND ANALYSIS: In this prospective one-armed multi-centre study, we investigate the safety, feasibility, and therapeutic efficacy of MLR-DBS to enable and enhance locomotor training in severely affected, subchronic and chronic American Spinal Injury Association Impairment Scale C patients in order to improve functional recovery. Patients undergo an intensive training programme with MLR-DBS while being regularly followed up until 6 months post-implantation. The acquired data of each timepoint are compared with baseline while the primary endpoint is performance in the 6-minute walking test. The clinical trial protocol was written in accordance with the Standard Protocol Items: Recommendations for Interventional Trials checklist. ETHICS AND DISSEMINATION: This first in-man study investigates the therapeutic potential of MLR-DBS in SCI patients. One patient has already been implanted with electrodes and underwent MLR stimulation during locomotion. Based on the preliminary results which promise safety and feasibility, recruitment of further patients is currently ongoing. Ethical approval has been obtained from the Ethical Committee of the Canton of Zurich (case number BASEC 2016-01104) and Swissmedic (10000316). Results will be published in peer-reviewed journals and presented at conferences. TRIAL REGISTRATION NUMBER: NCT03053791.


Assuntos
Estimulação Encefálica Profunda , Traumatismos da Medula Espinal , Animais , Humanos , Locomoção , Estudos Multicêntricos como Assunto , Estudos Prospectivos , Qualidade de Vida , Ratos , Medula Espinal , Traumatismos da Medula Espinal/terapia
6.
J Cereb Blood Flow Metab ; 35(8): 1323-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25806704

RESUMO

Controversy exists regarding the effect of high-altitude exposure on cerebrovascular CO2 reactivity (CVR). Confounding factors in previous studies include the use of different experimental approaches, ascent profiles, duration and severity of exposure and plausibly environmental factors associated with altitude exposure. One aim of the present study was to determine CVR throughout acclimatization to high altitude when controlling for these. Middle cerebral artery mean velocity (MCAv mean) CVR was assessed during hyperventilation (hypocapnia) and CO2 administration (hypercapnia) with background normoxia (sea level (SL)) and hypoxia (3,454 m) in nine healthy volunteers (26 ± 4 years (mean ± s.d.)) at SL, and after 30 minutes (HA0), 3 (HA3) and 22 (HA22) days of high-altitude (3,454 m) exposure. At altitude, ventilation was increased whereas MCAv mean was not altered. Hypercapnic CVR was decreased at HA0 (1.16% ± 0.16%/mm Hg, mean ± s.e.m.), whereas both hyper- and hypocapnic CVR were increased at HA3 (3.13% ± 0.18% and 2.96% ± 0.10%/mm Hg) and HA22 (3.32% ± 0.12% and 3.24% ± 0.14%/mm Hg) compared with SL (1.98% ± 0.22% and 2.38% ± 0.10%/mm Hg; P < 0.01) regardless of background oxygenation. Cerebrovascular conductance (MCAv mean/mean arterial pressure) CVR was determined to account for blood pressure changes and revealed an attenuated response. Collectively our results show that hypocapnic and hypercapnic CVR are both elevated with acclimatization to high altitude.


Assuntos
Aclimatação/fisiologia , Altitude , Circulação Cerebrovascular/fisiologia , Artéria Cerebral Média/fisiologia , Aclimatação/efeitos dos fármacos , Adulto , Velocidade do Fluxo Sanguíneo/efeitos dos fármacos , Velocidade do Fluxo Sanguíneo/fisiologia , Dióxido de Carbono/administração & dosagem , Circulação Cerebrovascular/efeitos dos fármacos , Feminino , Humanos , Hipercapnia/fisiopatologia , Hipocapnia/fisiopatologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA