Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39338853

RESUMO

Atomic-scale imaging using scanning probe microscopy is a pivotal method for investigating the morphology and physico-chemical properties of nanostructured surfaces. Time resolution represents a significant limitation of this technique, as typical image acquisition times are on the order of several seconds or even a few minutes, while dynamic processes-such as surface restructuring or particle sintering, to be observed upon external stimuli such as changes in gas atmosphere or electrochemical potential-often occur within timescales shorter than a second. In this article, we present a fully redesigned field programmable gate array (FPGA)-based instrument that can be integrated into most commercially available standard scanning probe microscopes. This instrument not only significantly accelerates the acquisition of atomic-scale images by orders of magnitude but also enables the tracking of moving features such as adatoms, vacancies, or clusters across the surface ("atom tracking") due to the parallel execution of sophisticated control and acquisition algorithms and the fast exchange of data with an external processor. Each of these measurement modes requires a complex series of operations within the FPGA that are explained in detail.

2.
Sensors (Basel) ; 24(16)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39204929

RESUMO

Time-resolved spectroscopic and electron-ion coincidence techniques are essential to study dynamic processes in materials or chemical compounds. For this type of analysis, it is necessary to have detectors capable of providing, in addition to image-related information, the time of arrival for each individual detected particle ("x, y, time"). The electronics capable of handling such sensors must meet requirements achievable only with time-to-digital converters (TDC) with a resolution on the order of tens of picoseconds and the use of a field-programmable gate array (FPGA) to manage data acquisition and transmission. This study introduces the design and implementation of an innovative TDC based on two FPGAs working symbiotically with different tasks: the first (AMD/Xilinx Artix® 7) directly implements a TDC, aiming for a temporal precision of 12 picoseconds, while the second (Intel Cyclone® 10) manages the acquisition and connectivity with the external world. The TDC has been optimized to operate on eight channels (+ sync) simultaneously but is potentially extendable to a greater number of channels, making it particularly suitable for coincidence measurements where it is necessary to temporally correlate multiple pieces of information from various measurement systems.

3.
Sensors (Basel) ; 22(12)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35746377

RESUMO

In hard X-ray applications that require high detection efficiency and short response times, such as synchrotron radiation-based Mössbauer absorption spectroscopy and time-resolved fluorescence or photon beam position monitoring, III-V-compound semiconductors, and dedicated alloys offer some advantages over the Si-based technologies traditionally used in solid-state photodetectors. Amongst them, gallium arsenide (GaAs) is one of the most valuable materials thanks to its unique characteristics. At the same time, implementing charge-multiplication mechanisms within the sensor may become of critical importance in cases where the photogenerated signal needs an intrinsic amplification before being acquired by the front-end electronics, such as in the case of a very weak photon flux or when single-photon detection is required. Some GaAs-based avalanche photodiodes (APDs) were grown by a molecular beam epitaxy to fulfill these needs; by means of band gap engineering, we realised devices with separate absorption and multiplication region(s) (SAM), the latter featuring a so-called staircase structure to reduce the multiplication noise. This work reports on the experimental characterisations of gain, noise, and charge collection efficiencies of three series of GaAs APDs featuring different thicknesses of the absorption regions. These devices have been developed to investigate the role of such thicknesses and the presence of traps or defects at the metal-semiconductor interfaces responsible for charge loss, in order to lay the groundwork for the future development of very thick GaAs devices (thicker than 100 µm) for hard X-rays. Several measurements were carried out on such devices with both lasers and synchrotron light sources, inducing photon absorption with X-ray microbeams at variable and controlled depths. In this way, we verified both the role of the thickness of the absorption region in the collection efficiency and the possibility of using the APDs without reaching the punch-through voltage, thus preventing the noise induced by charge multiplication in the absorption region. These devices, with thicknesses suitable for soft X-ray detection, have also shown good characteristics in terms of internal amplification and reduction of multiplication noise, in line with numerical simulations.

4.
J Synchrotron Radiat ; 28(Pt 3): 995-1005, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33950008

RESUMO

We report on a custom-built UHV-compatible Magneto-Optical Kerr Effect (MOKE) magnetometer for applications in surface and materials sciences, operating in tandem with the PhotoEmission Electron Microscope (PEEM) endstation at the Nanospectroscopy beamline of the Elettra synchrotron. The magnetometer features a liquid-nitrogen-cooled electromagnet that is fully compatible with UHV operation and produces magnetic fields up to about 140 mT at the sample. Longitudinal and polar MOKE measurement geometries are realized. The magneto-optical detection is based on polarization analysis using a photoelastic modulator. The sample manipulation system is fully compatible with that of the PEEM, making it possible to exchange samples with the beamline endstation, where complementary X-ray imaging and spectroscopy techniques are available. The magnetometer performance is illustrated by experiments on cobalt ultra-thin films, demonstrating close to monolayer sensitivity. The advantages of combining in situ growth, X-ray Magnetic Circular Dichroism imaging (XMCD-PEEM) and MOKE magnetometry into a versatile multitechnique facility are highlighted.

5.
J Synchrotron Radiat ; 28(Pt 6): 1811-1819, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738934

RESUMO

X-ray absorption fine-structure (XAFS) spectroscopy can assess the chemical speciation of the elements providing their coordination and oxidation state, information generally hidden to other techniques. In the case of trace elements, achieving a good quality XAFS signal poses several challenges, as it requires high photon flux, counting statistics and detector linearity. Here, a new multi-element X-ray fluorescence detector is presented, specifically designed to probe the chemical speciation of trace 3d elements down to the p.p.m. range. The potentialities of the detector are presented through a case study: the speciation of ultra-diluted elements (Fe, Mn and Cr) in geological rocks from a calcareous formation related to the dispersal processes from Ontong (Java) volcanism (mid-Cretaceous). Trace-elements speciation is crucial in evaluating the impact of geogenic and anthropogenic harmful metals on the environment, and to evaluate the risks to human health and ecosystems. These results show that the new detector is suitable for collecting spectra of 3d elements in trace amounts in a calcareous matrix. The data quality is high enough that quantitative data analysis could be performed to determine their chemical speciation.


Assuntos
Oligoelementos , Ecossistema , Teste de Esforço , Humanos , Metais , Oligoelementos/análise , Espectroscopia por Absorção de Raios X
6.
J Synchrotron Radiat ; 28(Pt 1): 131-145, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399562

RESUMO

In this paper the back-side-illuminated Percival 2-Megapixel (P2M) detector is presented, along with its characterization by means of optical and X-ray photons. For the first time, the response of the system to soft X-rays (250 eV to 1 keV) is presented. The main performance parameters of the first detector are measured, assessing the capabilities in terms of noise, dynamic range and single-photon discrimination capability. Present limitations and coming improvements are discussed.

7.
Inorg Chem ; 59(10): 7274-7282, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32343896

RESUMO

The photoionization dynamics of OsO4 and RuO4, chosen as model systems of small-size mononuclear heavy-metal complexes, has been theoretically studied by the time-dependent density functional theory (TDDFT). Accurate experimental measurements of photoionization dynamics as a benchmarking test for the theory are reported for the photoelectron asymmetry parameters of outer valence ionizations of OsO4, measured in the 17-90 eV photon energy range. The theoretical results are in good agreement with the available experimental data. The observed dynamical behavior of partial cross sections and asymmetry parameters has been related to both the coupling to the continuum of discrete excited states, giving strong modulations in the photon energy dependency, and the atomic composition of the initial ionized states, which determines the rate of decay of ionization probability for increasing excitation energies. Overall, an extensive analysis of the photoionization dynamics for valence and core orbitals is presented, showing good agreement with all the available experimental data. This provides confidence for the validity of the TDDFT approach in describing photoionization of heavy transition element compounds, with the perspective of being used for larger systems. Further experimental work is suggested for RuO4 to gather evidence of the sensitivity of the theoretical method to the nature of the metal atom.

8.
J Phys Chem A ; 124(20): 4115-4127, 2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32329341

RESUMO

The valence and core-level photoelectron spectra of gaseous indole, 2,3-dihydro-7-azaindole, and 3-formylindole have been investigated using VUV and soft X-ray radiation supported by both an ab initio electron propagator and density functional theory calculations. Three methods were used to calculate the outer valence band photoemission spectra: outer valence Green function, partial third order, and renormalized partial third order. While all gave an acceptable description of the valence spectra, the last method yielded very accurate agreement, especially for indole and 3-formylindole. The carbon, nitrogen, and oxygen 1s core-level spectra of these heterocycles were measured and assigned. The double ionization appearance potential for indole has been determined to be 21.8 ± 0.2 eV by C 1s and N 1s Auger photoelectron spectroscopy. Theoretical analysis identifies the doubly ionized states as a band consisting of two overlapping singlet states and one triplet state with dominant configurations corresponding to holes in the two uppermost molecular orbitals. One of the singlet states and the triplet state can be described as consisting largely of a single configuration, but other doubly ionized states are heavily mixed by configuration interactions. This work provides full assignment of the relative binding energies of the core level features and an analysis of the electronic structure of substituted indoles in comparison with the parent indole.

9.
J Synchrotron Radiat ; 26(Pt 2): 386-392, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30855247

RESUMO

The improved performance of third-generation light sources and the advent of next-generation synchrotron radiation facilities require the use of extremely precise monitoring of the main photon-beam parameters, such as position, absolute and relative intensity, and temporal structure. These parameters, and associated real-time feedbacks, are fundamental at the beamline control level and at the machine control level, to improve the stability of the photon beams and to provide bunch-to-bunch quantitative information. Fast response time, high radiation hardness and visible-blind response are main features of photon-beam monitors for VUV and X-ray synchrotron radiation beamlines; hence diamond-based detectors are outstanding candidates. Here, results are presented of an extensive measurement campaign aiming at optimizing the capabilities of diamond detectors to discern time structures below the 100 ps timescale. A custom-built device has been fabricated and tested at the Italian Synchrotron Radiation Laboratory Elettra in Trieste. The results obtained show that diamond is an excellent material for ultra-fast photon pulses with picosecond time resolution; finally the possibilities for application at free-electron laser sources are discussed.

10.
J Synchrotron Radiat ; 24(Pt 4): 886-897, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28664896

RESUMO

The SOLEIL synchrotron radiation source is regularly operated in special filling modes dedicated to pump-probe experiments. Among others, the low-α mode operation is characterized by shorter pulse duration and represents the natural bridge between 50 ps synchrotron pulses and femtosecond experiments. Here, the capabilities in low-α mode of the experimental set-ups developed at the TEMPO beamline to perform pump-probe experiments with soft X-rays based on photoelectron or photon detection are presented. A 282 kHz repetition-rate femtosecond laser is synchronized with the synchrotron radiation time structure to induce fast electronic and/or magnetic excitations. Detection is performed using a two-dimensional space resolution plus time resolution detector based on microchannel plates equipped with a delay line. Results of time-resolved photoelectron spectroscopy, circular dichroism and magnetic scattering experiments are reported, and their respective advantages and limitations in the framework of high-time-resolution pump-probe experiments compared and discussed.

11.
J Synchrotron Radiat ; 23(1): 29-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698042

RESUMO

A new high-performance method for the free-electron laser (FEL) focused beam diagnosis has been successfully tested at the FERMI FEL in Trieste, Italy. The novel pixelated phosphor detector (PPD) consists of micrometric pixels produced by classical UV lithography and dry etching technique, fabricated on a silicon substrate, arranged in a hexagonal geometry and filled with suitable phosphors. It has been demonstrated that the overall resolution of the system has increased by reducing the diffusion of the light in the phosphors. Various types of PPD have been produced and tested, demonstrating a high resolution in the beam profile and the ability to measure the actual spot size shot-to-shot with an unprecedented resolution. For these reasons, the proposed detector could become a reference technique in the FEL diagnosis field.

12.
J Synchrotron Radiat ; 23(1): 111-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26698052

RESUMO

With the increased brilliance of state-of-the-art synchrotron radiation sources and the advent of free-electron lasers (FELs) enabling revolutionary science with EUV to X-ray photons comes an urgent need for suitable photon imaging detectors. Requirements include high frame rates, very large dynamic range, single-photon sensitivity with low probability of false positives and (multi)-megapixels. At DESY, one ongoing development project - in collaboration with RAL/STFC, Elettra Sincrotrone Trieste, Diamond, and Pohang Accelerator Laboratory - is the CMOS-based soft X-ray imager PERCIVAL. PERCIVAL is a monolithic active-pixel sensor back-thinned to access its primary energy range of 250 eV to 1 keV with target efficiencies above 90%. According to preliminary specifications, the roughly 10 cm × 10 cm, 3.5k × 3.7k monolithic sensor will operate at frame rates up to 120 Hz (commensurate with most FELs) and use multiple gains within 27 µm pixels to measure 1 to ∼100000 (500 eV) simultaneously arriving photons. DESY is also leading the development of the AGIPD, a high-speed detector based on hybrid pixel technology intended for use at the European XFEL. This system is being developed in collaboration with PSI, University of Hamburg, and University of Bonn. The AGIPD allows single-pulse imaging at 4.5 MHz frame rate into a 352-frame buffer, with a dynamic range allowing single-photon detection and detection of more than 10000 photons at 12.4 keV in the same image. Modules of 65k pixels each are configured to make up (multi)megapixel cameras. This review describes the AGIPD and the PERCIVAL concepts and systems, including some recent results and a summary of their current status. It also gives a short overview over other FEL-relevant developments where the Photon Science Detector Group at DESY is involved.

13.
J Synchrotron Radiat ; 22(3): 538-43, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25931066

RESUMO

The Low Density Matter (LDM) beamline has been built as part of the FERMI free-electron laser (FEL) facility to serve the atomic, molecular and cluster physics community. After the commissioning phase, it received the first external users at the end of 2012. The design and characterization of the LDM photon transport system is described, detailing the optical components of the beamline.

14.
Rev Sci Instrum ; 93(11): 115109, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461546

RESUMO

The scope of this paper is to outline the main marks and performances of the MagneDyn beamline, which was designed and built to perform ultrafast magnetodynamic studies in solids. Open to users since 2019, MagneDyn operates with variable circular and linear polarized femtosecond pulses delivered by the externally laser-seeded FERMI free-electron laser (FEL). The very high degree of polarization, the high pulse-to-pulse stability, and the photon energy tunability in the 50-300 eV range allow performing advanced time-resolved magnetic dichroic experiments at the K-edge of light elements, e.g., carbon and at the M- and N-edge of the 3d-transition-metals and rare earth elements, respectively. To this end, two experimental end-stations are available. The first is equipped with an in situ dedicated electromagnet, a cryostat, and an extreme ultraviolet Wollaston-like polarimeter. The second, designed for carry-in user instruments, hosts also a spectrometer for pump-probe resonant x-ray emission and inelastic spectroscopy experiments with a sub-eV energy resolution. A Kirkpatrick-Baez active optics system provides a minimum focus of ∼20×20µm2 FWHM at the sample. A pump laser setup, synchronized with the FEL-laser seeding system, delivers sub-picosecond pulses with photon energies ranging from the mid-IR to near-UV for optical pump-FEL probe experiments with a minimal pump-probe jitter of few femtoseconds. The overall combination of these features renders MagneDyn a unique state-of-the-art tool for studying ultrafast magnetic and resonant emission phenomena in solids.

15.
Struct Dyn ; 8(3): 034304, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34169118

RESUMO

Here, we report on the conceptual design, the hardware realization, and the first experimental results of a novel and compact x-ray polarimeter capable of a single-pulse linear polarization angle detection in the extreme ultraviolet photon energy range. The polarimeter is tested by performing time resolved pump-probe experiments on a Ni80Fe20 Permalloy film at the M2,3 Ni edge at an externally seeded free-electron laser source. Comparison with similar experiments reported in the literature shows the advantages of our approach also in view of future experiments.

16.
J Synchrotron Radiat ; 17(4): 445-50, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20567075

RESUMO

The extensive upgrade of the experimental end-station of the SPECTROMICROSCOPY-3.2L beamline at Elettra synchrotron light source is reported. After the upgrade, angle-resolved photoemission spectroscopy from a submicrometre spot and scanning microscopy images monitoring the photoelectron signal inside selected acquisition angle and energy windows can be performed. As a test case, angle-resolved photoemission spectroscopy from single flakes of highly oriented pyrolitic graphite and imaging of the flakes with image contrast owing to rotation of the band dispersion of different flakes are presented.

17.
Rev Sci Instrum ; 91(7): 073106, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32752873

RESUMO

We report here an experimental setup to perform three-pulse pump-probe measurements over a wide wavelength and temperature range. By combining two pump pulses in the visible (650 nm-900 nm) and mid-IR (5 µm-20 µm) range, with a broadband supercontinuum white-light probe, our apparatus enables both the combined selective excitation of different material degrees of freedom and a full time-dependent reconstruction of the non-equilibrium dielectric function of the sample. We describe here the optical setup, the cryogenic sample environment, and the custom-made acquisition electronics capable of referenced single-pulse detection of broadband spectra at the maximum repetition rate of 50 kHz, achieving a sensitivity of the order of 10-4 over an integration time of 1 s. We demonstrate the performance of the setup by reporting data on a mid-IR pump, optical push, and broadband probe in a single crystal of Bi2Sr2Y0.08Ca0.92Cu2O8+δ across the superconducting and pseudogap phases.

18.
Ultramicroscopy ; 205: 49-56, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31234102

RESUMO

Time resolution is one of the most severe limitations of scanning probe microscopies (SPMs), since the typical image acquisition times are in the order of several seconds or even few minutes. As a consequence, the characterization of dynamical processes occurring at surfaces (e.g. surface diffusion, film growth, self-assembly and chemical reactions) cannot be thoroughly addressed by conventional SPMs. To overcome this limitation, several years ago we developed a first prototype of the FAST module, an add-on instrument capable of driving a commercial scanning tunneling microscope (STM) at and beyond video rate frequencies. Here we report on a fully redesigned version of the FAST module, featuring improved performance and user experience, which can be used both with STMs and atomic force microscopes (AFMs), and offers additional capabilities such as an atom tracking mode. All the new features of the FAST module, including portability between different commercial instruments, are described in detail and practically demonstrated.

19.
Rev Sci Instrum ; 82(5): 053702, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21639502

RESUMO

We present the design and the performance of the FAST (Fast Acquisition of SPM Timeseries) module, an add-on instrument that can drive commercial scanning probe microscopes (SPM) at and beyond video rate image frequencies. In the design of this module, we adopted and integrated several technical solutions previously proposed by different groups in order to overcome the problems encountered when driving SPMs at high scanning frequencies. The fast probe motion control and signal acquisition are implemented in a way that is totally transparent to the existing control electronics, allowing the user to switch immediately and seamlessly to the fast scanning mode when imaging in the conventional slow mode. The unit provides a completely non-invasive, fast scanning upgrade to common SPM instruments that are not specifically designed for high speed scanning. To test its performance, we used this module to drive a commercial scanning tunneling microscope (STM) system in a quasi-constant height mode to frame rates of 100 Hz and above, demonstrating extremely stable and high resolution imaging capabilities. The module is extremely versatile and its application is not limited to STM setups but can, in principle, be generalized to any scanning probe instrument.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA