Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 351, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819646

RESUMO

The design, development, and obtaining of nanostructured materials, such as polymeric nanoparticles, have garnered interest due to loading therapeutic agents and its broad applicability. Polymeric nanoparticle synthesis employs advanced techniques such as the double emulsion approach and the pH-driven method, allowing the efficient incorporation of active compounds into these matrices. These loading methods ensure compound stability within the polymeric structure and enable control of the release of therapeutic agents. The ability of loaded polymeric nanoparticles to transport and release therapeutic agents on target manner represents a significant advancement in the quest for effective therapeutic solutions. Amid escalating concerns regarding antimicrobial resistance, interventions using polymeric nanostructures stand out for the possibility of carrying antimicrobial agents and enhancing antibacterial action against antibiotic-resistant bacteria, making a new therapeutic approach or complement to conventional treatments. In this sense, the capability of these polymeric nanoparticles to act against Escherichia coli underscores their relevance in controlling bacterial infections. This mini-review provides a comprehensive synthesis of promising techniques for loading therapeutic agents into polymeric nanoparticles highlighting methodologies and their implications, addressing prospects of combating bacterial infections caused by E. coli. KEY POINTS: • The double emulsion method provides control over size and release of bioactives. • The pH-driven method improves the solubility, stability, and release of active. • The methods increase the antibacterial action of those encapsulated in PNPs.


Assuntos
Antibacterianos , Emulsões , Infecções por Escherichia coli , Escherichia coli , Nanopartículas , Polímeros , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Emulsões/química , Polímeros/química , Polímeros/farmacologia , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Produtos Biológicos/química , Produtos Biológicos/farmacologia
2.
Appl Microbiol Biotechnol ; 108(1): 241, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413482

RESUMO

The present work aimed to develop, characterize, and evaluate the antibacterial and antibiofilm activity of two nanoemulsions (NEs) containing 500 µg/mL of curcumin from Curcuma longa (CUR). These NEs, produced with heating, contain olive oil (5%) and the surfactants tween 80 (5%) and span 80 (2.5%), water q.s. 100 mL, and were stable for 120 days. NE-2-CUR presented Ø of 165.40 ± 2.56 nm, PDI of 0.254, ζ of - 33.20 ± 1.35 mV, pH of 6.49, and Entrapment Drug Efficiency (EE) of 99%. The NE-4-CUR showed a Ø of 105.70 ± 4.13 nm, PDI of 0.459, ζ of - 32.10 ± 1.45 mV, pH of 6.40 and EE of 99.29%. Structural characterization was performed using DRX and FTIR, thermal characterization using DSC and TG, and morphological characterization using SEM, suggesting that there is no significant change in the CUR present in the NEs and that they remain stable. The MIC was performed by the broth microdilution method for nine gram-positive and gram-negative bacteria, as well as Klebsiella pneumoniae clinical isolates resistant to antibiotics and biofilm and efflux pump producers. The NEs mostly showed a bacteriostatic profile. The MIC varied between 125 and 250 µg/mL. The most sensitive bacteria were Staphylococcus aureus and Enterococcus faecalis, for which NE-2-CUR showed a MIC of 125 µg/mL. The NEs and ceftazidime (CAZ) interaction was also evaluated against the K. pneumoniae resistant clinical isolates using the Checkerboard method. NE-2-CUR and NE-4-CUR showed a synergistic or additive profile; there was a reduction in CAZ MICs between 256 times (K26-A2) and 2 times (K29-A2). Furthermore, the NEs inhibited these isolates biofilms formation. The NEs showed a MBIC ranging from 15.625 to 250 µg/mL. Thus, the NEs showed physicochemical characteristics suitable for future clinical trials, enhancing the CAZ antibacterial and antibiofilm activity, thus becoming a promising strategy for the treatment of bacterial infections caused by multidrug-resistant K. pneumoniae. KEY POINTS: • The NEs showed physicochemical characteristics suitable for future clinical trials. • The NEs showed a synergistic/additive profile, when associated with ceftazidime. • The NEs inhibited biofilm formation of clinical isolates.


Assuntos
Anti-Infecciosos , Curcumina , Antibacterianos/farmacologia , Ceftazidima/farmacologia , Curcumina/farmacologia , Curcumina/química , Azeite de Oliva/farmacologia , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Anti-Infecciosos/farmacologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana
3.
Arch Microbiol ; 205(5): 185, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043091

RESUMO

The present study aimed to elaborate a review of multidrug-resistant (MDR) bacteria in soil, food, aquatic environments, cattle, poultry, and swine farms in Brazil. Initially, the literature database for published papers from 2012 to 2023 was Scientific Electronic Library Online (SciELO), U.S. National Library of Medicine (PubMed), and Google Scholar, through the descriptors: antimicrobial resistance, resistance profile, multidrug resistance, environmental bacteria, and pathogenic bacteria. The studies demonstrated the prevalence of pathogenic and resistant bacteria in environments that favor their rapid dissemination. Bacteria of medical importance, such as Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Listeria monocytogenes, Salmonella spp., Shigella spp., Vibrio spp., were present in samples from animal farms and foods, including cheese and milk, urban aquatic environments, hospital effluents, and shrimp farms. Studies suggested that important bacteria have been disseminated through different niches with easy contact with humans, animals, and food, demonstrating the danger of the emergence of increasingly difficult conditions for treating and controlling these infections. Thus, better understanding and characterizing the resistance profiles of bacteria in these regions, mainly referring to MDR bacteria, can help develop solutions to prevent the progression of this public health problem.


Assuntos
Bactérias , Farmacorresistência Bacteriana Múltipla , Humanos , Animais , Bovinos , Suínos , Brasil , Bactérias/genética , Escherichia coli , Salmonella/genética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana
4.
Appl Microbiol Biotechnol ; 106(11): 3973-3984, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35670851

RESUMO

The discovery of antibiotics in the twentieth century made it possible to treat bacterial infections and revolutionized modern medicine. However, gradually, it is possible to perceive a decrease in the effectiveness of antimicrobial agents against pathogenic isolates, which, together with the low investment in the discovery and/or development of new antibiotics by large pharmaceutical companies since the 1960s, makes it increasingly difficult to treatment of infections caused by these microorganisms. The search for strategies capable of potentiating the effect of existing drugs through the development of new therapeutic approaches, which also have the potential to circumvent bacterial resistance to antibiotics, has become indispensable. In this context, metallic nanoparticles stand out, as they could be used to act synergistically with drugs. Thus, the objective of this review was to present the latest information on the synergistic activity of antibiotics with metallic nanoparticles, pointing out this association as a promising alternative for the preservation of bacterial sensitivity to these drugs. The different metallic nanoparticles can present different benefits in the treatment of bacterial infections, with this being able to potentiate the bacterial activity of antibiotics that are widely used in the clinic, being able to increase the susceptibility in multiresistant microorganisms. KEY POINTS: • Metallic nanoparticles increased the antimicrobial action of drugs; • Metallic nanoparticles compromise the action of bacterial efflux pumps; • Biofilm formation was inhibited after treatment with metallic nanoparticles.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Nanopartículas Metálicas , Nanopartículas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Bactérias , Infecções Bacterianas/tratamento farmacológico , Humanos , Nanopartículas Metálicas/uso terapêutico
5.
Curr Microbiol ; 79(6): 175, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35488983

RESUMO

Antimicrobial resistance (AMR) represents a critical obstacle to public health worldwide, due to the high incidence of strains resistant to available antibiotic therapies. In recent years, there has been a significant increase in the prevalence of resistant epidemic strains, associated with this, public health authorities have been alarmed about a possible scenario of uncontrolled dissemination of these microorganisms and the difficulty in interrupting their transmission, as nosocomial pathogens with resistance profiles previously considered sporadic. They become frequent bacteria in the community. In addition, therapy for infections caused by these pathogens is based on broad-spectrum antibiotic therapy, which favors an increase in the tolerance of remaining bacterial cells and is commonly associated with a poor prognosis. In this review, we present the current status of epidemic strains of methicillin-resistant Staphylococcus aureus (MRSA), Vancomycin-resistant Enterococcus (VRE), MDR Mycobacterium tuberculosis, extended-spectrum ß-lactamase-producing Enterobacterales (ESBL), Klebsiella pneumoniae carbapenemase (KPC), and-New Delhi Metallo-beta-lactamase-producing Pseudomonas aeruginosa (NDM).


Assuntos
Infecções Bacterianas , Staphylococcus aureus Resistente à Meticilina , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia , Humanos , Klebsiella pneumoniae , Staphylococcus aureus Resistente à Meticilina/genética
6.
Arch Microbiol ; 203(7): 4303-4311, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34110480

RESUMO

The aim of this study was to evaluate the antioxidant, antibacterial, and antibiofilm activities of nerolidol. The antioxidant activity of nerolidol was determined using the total antioxidant activity method. Antibacterial activity was performed using the microdilution method to determine the minimum inhibitory concentration (MIC) against seven standard strains of the ATCC and four bacterial clinical isolates with a resistance profile, following the Clinical and Laboratory Standards Institute (CLSI). The antibiofilm activity of nerolidol was performed using the crystal violet method. The results of the antioxidant test revealed a total antioxidant activity of 93.94%. Nerolidol inhibited the growth of Staphylococcus aureus (MIC = 1 mg/mL), Streptococcus mutans (MIC = 4 mg/mL), Pseudomonas aeruginosa (MIC = 0.5 mg/mL), and Klebsiella pneumoniae (MIC = 0.5 mg/mL). For clinical isolates, nerolidol showed an inhibitory potential against multidrug-resistant P. aeruginosa, K. pneumoniae carbapenemase (MIC = 0.5 mg/mL), methicillin-susceptible S. aureus (MIC = 2 mg/mL), and methicillin-resistant S. aureus (MIC = 2 mg/mL). Nerolidol showed similar antibacterial activity against ATCC strains and hospital clinical isolates with resistance profile, suggesting that even though these strains are resistant to antibiotics, they are still sensitive to nerolidol. Nerolidol exerted a dose-dependent effect on the inhibition of biofilm formation, even at subinhibitory concentrations. Nerolidol inhibited bacterial biofilms of ATCC strains at a rate ranging from 51 to 98%, at concentrations ranging from 0.5 to 4 mg/mL. For clinical bacterial isolates, biofilm inhibition ranged from 6 to 60%. Therefore, the present study showed the antioxidant, antibacterial, and antibiofilm properties of nerolidol.


Assuntos
Bactérias , Biofilmes , Sesquiterpenos , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Sesquiterpenos/farmacologia
7.
Curr Microbiol ; 78(10): 3609-3619, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34432112

RESUMO

Due to the deaths from infections caused by multidrug-resistant microorganisms worldwide, the World Health Organization considers antibiotic resistance to be a critical global public health problem. Bacterial resistance mechanisms are diverse and can be acquired through the overexpression of transmembrane proteins that are called efflux pumps, which act by expelling drugs from the intracellular environment, thereby preventing their action and contributing to the severity of infections. Efflux pumps are one of the main mechanisms of bacterial resistance, and it is important to identify new molecules that are capable of inhibiting the action of efflux pumps and circumvent the problem of resistance linked to the expression of these transmembrane proteins. The plants are promising candidates for obtaining biologically active substances, such as essential oils, with antimicrobial activity and inhibitors of efflux pumps, which can help in the resensitization of bacterial strains resistant to antibiotics. Therefore, this review aims to present the recently reported inhibitory activity of essential oils against bacterial pathogens that produce efflux pumps.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Óleos Voláteis , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Farmacorresistência Bacteriana Múltipla , Humanos , Óleos Voláteis/farmacologia
8.
Mycopathologia ; 179(3-4): 225-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25431088

RESUMO

The aim of this study was to assess the efficacy of topical application of a liposomal formulation of itraconazole for the treatment of experimental keratitis with endophthalmitis caused by Aspergillus flavus. The liposomes were obtained by the lipid film hydration method followed by sonication. Adult female Wistar rats (weighing 200-220 g) were immunosuppressed by intraperitoneal injection of 150 mg/kg of cyclophosphamide 3 days before infection by exposure to the fungus A. flavus (10(7) spores/ml). Forty-eight hours later, the animals were treated with the liposomal formulation. For comparison, one group of animals (n = 6) was treated with the same drug not encapsulated. At the end of the experiment, the animals were evaluated for clinical signs and number of colony forming units (CFU/g), along with direct microscopic examination. The results indicated that the liposomal formulation of itraconazole has better antifungal activity than the unencapsulated drug in the treatment of fungal keratitis with endophthalmitis caused experimentally by A. flavus in Wistar rats.


Assuntos
Antifúngicos/administração & dosagem , Aspergilose/tratamento farmacológico , Aspergillus flavus/efeitos dos fármacos , Química Farmacêutica , Endoftalmite/tratamento farmacológico , Itraconazol/administração & dosagem , Ceratite/tratamento farmacológico , Animais , Antifúngicos/química , Aspergilose/microbiologia , Aspergillus flavus/fisiologia , Endoftalmite/microbiologia , Feminino , Humanos , Itraconazol/química , Ceratite/microbiologia , Lipossomos/química , Ratos , Ratos Wistar
9.
Int J Biol Macromol ; 269(Pt 1): 132108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38710258

RESUMO

Natural and synthetic biodegradable polymers are widely used to obtain more sustainable films with biological, physicochemical, and mechanical properties for biomedical purposes. The incorporation of essential oils (EOs) in polymeric films can optimize the biological activities of these EOs, protect them from degradation, and serve as a prototype for new biotechnological products. This article aims to discuss updates over the last 10 years on incorporating EOs into natural and synthetic biodegradable polymer films for biomedical applications. Chitosan, alginates, cellulose, and proteins such as gelatine, silk, and zein are among the natural polymers most commonly used to prepare biodegradable films for release EOs. In addition to these, the most cited synthetic biodegradable polymers are poly(L-lactide) (PLA), poly(vinyl alcohol) (PVA), and poly(ε-caprolactone) (PCL). The EOs of clove, cinnamon, tea tree, eucalyptus, frankincense, lavender, thyme and oregano incorporated into polymeric films have been the most studied EOs in recent years in the biomedical field. Biomedical applications include antimicrobial activity against pathogenic bacteria and fungi, anticancer activity, potential for tissue engineering and regeneration with scaffolds and wound healing as dressings. Thus, this article reports on the importance of incorporating EOs into biodegradable polymer films, making these systems especially attractive for various biomedical applications.


Assuntos
Óleos Voláteis , Polímeros , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Polímeros/química , Humanos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Engenharia Tecidual/métodos , Animais
10.
Life Sci ; 341: 122462, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38281542

RESUMO

Colorectal cancer (CRC) remains a significant global health concern, necessitating continuous investigation into its etiology and potential risk factors. Recent research has shed light on the potential role of pKs-positive Escherichia coli (pKs + E. coli) and colibactin in the development and progression of CRC. Therefore, this review aimed to provide an updated analysis of the prevalence and implications of pKs + E. coli in colorectal cancer. We conducted a literature review search in major scientific databases to identify relevant studies exploring the association between pKs + E. coli and CRC. The search strategy included studies published up to the present date, and articles were carefully selected based on predefined inclusion criteria. Thus, the present study encompasses scientific evidence from clinical and epidemiological studies supporting the presence of pKs + E. coli in CRC patients, demonstrating a consistent and significant association in multiple studies. Furthermore, we highlighted the potential mechanisms by which colibactin may promote tumorigenesis and cancer progression within the colorectal mucosa, including the production of genotoxic virulence factors. Additionally, we explored current diagnostic methods for detecting pKs + E. coli in clinical settings, emphasizing the importance of accurate identification. Moreover, we discussed future strategies that could utilize the presence of this strain as a biomarker for CRC diagnosis and treatment. In conclusion, this review consolidated existing evidence on the prevalence and implications of pKs + E. coli in colorectal cancer. The findings underscore the importance of further research to elucidate the precise mechanisms linking this strain to CRC pathogenesis and to explore its potential as a therapeutic target or diagnostic marker. Ultimately, a better understanding of the role of pKs + E. coli in CRC may pave the way for innovative strategies in CRC management and patient care.


Assuntos
Neoplasias Colorretais , Escherichia coli , Policetídeos , Humanos , Prevalência , Peptídeos , Neoplasias Colorretais/epidemiologia
11.
Braz J Microbiol ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38802685

RESUMO

Helicobacter pylori is a major cause of gastrointestinal disorders such as chronic gastritis, peptic ulcers, mucosa-associated lymphoid tissue (MALT) lymphoma, and gastric cancer. It is estimated that around half of the world's population is infected with this pathogen, with underdeveloped countries reporting the highest frequencies. The genes cagA, cagM, vacA, and oipA are some of the most important virulence factors of H. pylori; however, there are no recent studies from Recife-PE demonstrating their frequency, and their relationship with severe gastric modifications. This work aims to use qualitative PCR to detect the virulence genes cagA, cagM, vacA, and oipA in H. pylori isolates obtained from patients in a public hospital in Recife (PE). We collected samples from the stomach's body and antrum of 147 patients, from which 71 (48%) tested positive for H. pylori. Among positive samples, the most frequently infected gender was female (44/71, 62%), and the most frequently infected age group was those above the age of 46 (31/71, 44%). Histological examination of H. pylori-positive samples revealed alterations other than chronic gastritis, including metaplasia and atrophy. The frequency of cagA, cagM, and oipA genes were identified in 84%, 56%, and 69% of the samples tested, respectively, as well as the vacA-s1m1 allelic combination (77%). However, there was no statistically significant variation in the occurrence of these genes, therefore they cannot be considered unique markers of severity in our setting. New research with larger samples and investigations of other genetic markers can aid uncover local risk factors and lead to a better understanding of H. pylori's pathogenesis.

12.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38543106

RESUMO

This study aimed to co-encapsulate ceftazidime and tobramycin in zein nanoparticles coated with chitosan and to characterize and evaluate the antibacterial and antibiofilm activity against antibiotic-resistant Pseudomonas aeruginosa and Klebsiella pneumoniae. Zein nanoparticles, synthesized using the nanoprecipitation method, were characterized by their particle size (Ø), polydispersity index (PDI), zeta potential (ζ), pH, and encapsulation efficiency (%EE). The chitosan coating provided stability, and physicochemical analyses revealed chemical interactions, efficient drug encapsulation, and thermal stability. The release kinetics demonstrated controlled release in simulated gastric and intestinal pH. The antibacterial activity, assessed by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), indicated effectiveness against both pathogens. Antibiofilm assays, conducted using the crystal violet method, demonstrated the inhibition and eradication of biofilms. The chitosan-coated zein nanoparticles with CAZ and/or TOB exhibited Ø (315-335 nm), PDI (<0.2), ζ (+40 to +50 mV), pH (5), and %EE (>55%). Notably, the co-encapsulation formulation (CAZ-TOB-ZNP-CH) showed enhanced antibacterial and antibiofilm activities compared to the individual formulations. These findings suggest that the developed nanoparticles present a promising alternative for treating respiratory and intestinal infections caused by antibiotic-resistant and biofilm-producing P. aeruginosa and K. pneumoniae.

13.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38931469

RESUMO

Escherichia coli has been associated with the induction of colorectal cancer (CRC). Thus, combined therapy incorporating usnic acid (UA) and antibiotics such as ceftazidime (CAZ), co-encapsulated in liposomes, could be an alternative. Coating the liposomes with chitosan (Chi) could facilitate the oral administration of this nanocarrier. Liposomes were prepared using the lipid film hydration method, followed by sonication and chitosan coating via the drip technique. Characterization included particle size, polydispersity index, zeta potential, pH, encapsulation efficiency, and physicochemical analyses. The minimum inhibitory concentration and minimum bactericidal concentration were determined against E. coli ATCC 25922, NCTC 13846, and H10407 using the microdilution method. Antibiofilm assays were conducted using the crystal violet method. The liposomes exhibited sizes ranging from 116.5 ± 5.3 to 240.3 ± 3.5 nm and zeta potentials between +16.4 ± 0.6 and +28 ± 0.8 mV. The encapsulation efficiencies were 51.5 ± 0.2% for CAZ and 99.94 ± 0.1% for UA. Lipo-CAZ-Chi and Lipo-UA-Chi exhibited antibacterial activity, inhibited biofilm formation, and preformed biofilms of E. coli. The Lipo-CAZ-UA-Chi and Lipo-CAZ-Chi + Lipo-UA-Chi formulations showed enhanced activities, potentially due to co-encapsulation or combination effects. These findings suggest potential for in vivo oral administration in future antibacterial and antibiofilm therapies against CRC-inducing bacteria.

14.
Biology (Basel) ; 13(5)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38785836

RESUMO

The present study aimed to evaluate the in vitro antibacterial and antibiofilm activity of bacterial cellulose hydrogel produced by Zoogloea sp. (HYDROGEL) containing vancomycin (VAN) against bacterial strains that cause wound infections, such as multidrug-resistant (MDR) Staphylococcus aureus and Staphylococcus epidermidis. Initially, HYDROGEL was obtained from sugar cane molasses, and scanning electron microscopy (SEM) was performed to determine morphological characteristics. Then, VAN was incorporated into HYDROGEL (VAN-HYDROGEL). The antibacterial activity of VAN, HYDROGEL, and VAN-HYDROGEL was assessed using the broth microdilution method to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) against methicillin-sensitive S. aureus (MSSA) ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 33591, S. epidermidis INCQS 00016 (ATCC 12228), five clinical isolates of MRSA, and nine clinical isolates of methicillin-resistant S. epidermidis, following the Clinical and Laboratory Standards Institute (CLSI) guidelines. Additionally, the antibacterial activity of VAN, HYDROGEL, and VAN-HYDROGEL was studied using the time-kill assay. Subsequently, the antibiofilm activity of VAN, HYDROGEL, and VAN-HYDROGEL was evaluated using crystal violet and Congo red methods, as well as SEM analysis. VAN and VAN-HYDROGEL showed bacteriostatic and bactericidal activity against MRSA and methicillin-resistant S. epidermidis strains. HYDROGEL did not show any antibacterial activity. Analysis of the time-kill assay indicated that HYDROGEL maintained the antibacterial efficacy of VAN, highlighting its efficiency as a promising carrier. Regarding antibiofilm activity, VAN and HYDROGEL inhibited biofilm formation but did not demonstrate biofilm eradication activity against methicillin-resistant S. aureus and S. epidermidis strains. However, it was observed that the biofilm eradication potential of VAN was enhanced after incorporation into HYDROGEL, a result also proven through images obtained by SEM. From the methods carried out in this study, it was possible to observe that HYDROGEL preserved the antibacterial activity of vancomycin, aside from exhibiting antibiofilm activity and enhancing the antibiofilm effect of VAN. In conclusion, this study demonstrated the potential of HYDROGEL as a candidate and/or vehicle for antibiotics against MDR bacteria that cause wound infections.

15.
Braz J Microbiol ; 54(2): 1009-1020, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36943639

RESUMO

The incidence of infections caused by resistant Gram-negative pathogens has become a critical factor in public health due to the limitation of therapeutic options for the control of infections caused, especially, by Enterobacteriaceae (Escherichia coli and Klebsiella pneumoniae), Pseudomonas spp., and Acinetobacter spp. Thus, given the increase in resistant pathogens and the reduction of therapeutic options, polymyxins were reintroduced into the clinic. As the last treatment option, polymyxins were regarded as the therapeutic key, since they were one of the few classes of antimicrobials that had activity against multidrug-resistant Gram-negative bacilli. Nonetheless, over the years, the frequent use of this antimicrobial has led to reports of resistance cases. In 2015, mcr (mobile colistin resistance), a colistin resistance gene, was described in China. Due to its location on carrier plasmids, this gene is characterized by rapid spread through conjugation. It has thus been classified as a rising threat to public health worldwide. In conclusion, based on several reports that show the emergence of mcr in different regional and climatic contexts and species of isolates, this work aims to review the literature on the incidence of the mcr gene in Brazil in different regions, types of samples identified, species of isolates, and type of carrier plasmid.


Assuntos
Colistina , Proteínas de Escherichia coli , Colistina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Brasil/epidemiologia , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Polimixinas/uso terapêutico , Proteínas de Escherichia coli/genética , Plasmídeos/genética , Testes de Sensibilidade Microbiana
16.
Braz J Microbiol ; 54(3): 1513-1521, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37540461

RESUMO

The aim of this study was to evaluate the efficacy and non-toxicity of ciclopirox olamine-loaded liposomes against Cryptococcus neoformans clinical isolates. Initially, 24-1 fractional experimental design was carried out to obtain an optimized formulation of liposomes containing CPO (CPO-LipoC), which were then used to prepare stealth liposomes (CPO-LipoS). Liposomal formulations were characterized by their mean size diameter, polydispersity index (PDI), and drug encapsulation efficiency (EE%). Immunosuppressed mice were exposed to CPO-LipoS at 0.5 mg/kg/day for 14 days to verify possible histopathological alterations in the liver and kidneys. Immunosuppressed mice infected with C. neoformans were treated with CPO-LipoS at 0.5 mg/kg/day for 14 days to quantify the fungal burden in spleen, liver, lungs, and brain. CPO-LipoS presented a mean size diameter, PDI, and EE% of 101.4 ± 0.7 nm, 0.307, and 96.4 ± 0.9%, respectively. CPO-LipoS was non-toxic for the liver and kidneys of immunosuppressed mice. At the survival curve, all infected animals submitted to treatment with CPO-LipoS survived until the end of the experiment. Treatment with CPO-LipoS reduced C. neoformans cells in the spleen (59.3 ± 3.4%), liver (75.0 ± 3.6%), lungs (75.7 ± 6.7%), and brain (54.2 ± 3.2%). CPO-LipoS exhibit antifungal activity against C. neoformans, and the encapsulation of CPO into stealth liposomes allows its use as a systemic drug for treating cryptococcosis.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Camundongos , Ciclopirox/uso terapêutico , Lipossomos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Criptococose/tratamento farmacológico , Criptococose/microbiologia
17.
Life Sci ; 290: 120202, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896161

RESUMO

Colorectal cancer (CRC), also named as colon and rectal or bowel cancer, is one of the leading neoplasia diagnosed in the world. Genetic sequencing studies of microorganisms from the intestinal microbiota of patients with CRC revealed that changes in its composition occur with the development of the disease, which can play a fundamental role in its development, being mediated by the production of metabolites and toxins that damage enterocytes. Some microorganisms are frequently reported in the literature as the main agents of this process, such as the bacteria Fusobacterium nucleatum, Escherichia coli and Bacteroides fragilis. Thus, understanding the mechanisms and function of each microorganism in CRC is essential for the development of treatment tools that focus on the gut microbiota. This review verifies current research aimed at evaluating the microorganisms present in the microbiota that can influence the development of CRC, as well as possible forms of treatment that can prevent the initiation and/or spread of this disease. Due to the incidence of CRC, alternatives have been launched considering factors beyond those already known in the disease development, such as diet, fecal microbiota transplantation, use of probiotics and antibiotics, which have been widely studied for this purpose. However, despite being promising, the studies that focus on the development of new therapeutic approaches targeting the microorganisms that cause CRC still need to be improved and better developed, involving new techniques to elucidate the effectiveness and safety of these new methods.


Assuntos
Neoplasias Colorretais/microbiologia , Neoplasias Colorretais/terapia , Microbioma Gastrointestinal/fisiologia , Neoplasias Colorretais/prevenção & controle , Transplante de Microbiota Fecal , Humanos , Microbiota , Probióticos/uso terapêutico
18.
Tuberculosis (Edinb) ; 135: 102208, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35567896

RESUMO

Tuberculosis is an intracellular infectious disease caused by Mycobacterium tuberculosis, which mainly affects the lungs. Especially in patients infected by the Human Immunodeficiency Virus (HIV) or other immunosuppressed patients, tuberculosis is considered one of the infectious diseases with higher morbidity and mortality rates. Despite considerable improvements in diagnosis and treatment during the last decades, the drugs currently used in tuberculosis treatment still have limitations, such as low plasma levels after oral administration, low solubility in water, fast metabolization by the liver with a short 1/2 life and low patient adherence to treatment. Another limiting point is drug-resistant strains. Thus, to overcome such limitations, nanotechnology emerges as a promising alternative due to the drug release systems and its recent advances that show potential improvements, such as improved bioavailability and reduction of the therapeutic dose. In this context, this manuscript aimed to highlight the nanotechnology-based drug delivery systems studies pointing to those most effective for tuberculosis treatment. Studies based on polymeric nanoparticles are promising in diagnosing, treating, and even preventing tuberculosis because they have the high stability and transport capacity of these drugs. Solid lipid nanoparticles are another type of promising nanocarriers for treating tuberculosis, mainly for delivering drugs to the remote lymphatic system. Other promising nanosystems are the liposomes, since they have also shown efficacy in significantly reducing bacterial load compared to conventional drug administration. Given the results presented, the administration of drugs through nanotechnology-based drug delivery systems has benefits in treating tuberculosis since in vitro and in vivo studies have revealed that nanotechnology through nano- and micro-scale systems is an effective and promising approach for the treatment of tuberculosis. Furthermore, the increase in the number of patents for nanosystems aimed at treating TB has demonstrated researchers' commitment in the quest to improve the therapeutic arsenal against tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Lipossomos , Nanopartículas , Nanotecnologia/métodos , Tuberculose/diagnóstico , Tuberculose/tratamento farmacológico
19.
Antibiotics (Basel) ; 10(5)2021 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-34063213

RESUMO

Antibiotic monotherapy may become obsolete mainly due to the continuous emergence of resistance to available antimicrobials, which represents a major uncertainty to human health. Taking into account that natural products have been an inexhaustible source of new compounds with clinical application, lectins are certainly one of the most versatile groups of proteins used in biological processes, emerging as a promising alternative for therapy. The ability of lectins to recognize carbohydrates present on the cell surface allowed for the discovery of a wide range of activities. Currently the number of antimicrobials in research and development does not match the rate at which resistance mechanisms emerge to an effective antibiotic monotherapy. A promising therapeutic alternative is the combined therapy of antibiotics with lectins to enhance its spectrum of action, minimize adverse effects, and reduce resistance to treatments. Thus, this review provides an update on the experimental application of antibiotic therapies based on the synergic combination with lectins to treat infections specifically caused by multidrug-resistant and biofilm-producing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. We also briefly discuss current strategies involving the modulation of the gut microbiota, its implications for antimicrobial resistance, and highlight the potential of lectins to modulate the host immune response against oxidative stress.

20.
J Nanopart Res ; 23(8): 196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456615

RESUMO

This study aimed to evaluate the effectiveness of silver nanoparticles-chitosan composites (AgNPs) with different morphologies and particle size distributions against resistant bacteria and biofilm formation. Four different samples were prepared by a two-step procedure using sodium borohydride and ascorbic acid as reducing agents and characterized by UV-Vis absorption spectra, scanning transmission electron microscopy. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the AgNPs were determined according to the Clinical and Laboratory Standards Institute (CLSI) against clinical isolates multidrug-resistant and strains of the American Type Culture Collection (ATCC). An assay was performed to determine the MICs during 20 successive bacteria exposures to AgNPs to investigate whether AgNPs induce tolerance in bacteria. The antibiofilm activities of AgNPs were also evaluated by determining the minimum biofilm inhibitory concentration (MBIC). The spherical AgNPs present diameters ranging from 9.3 to 62.4 nm, and some samples also have rod-, oval-, and triangle-shaped nanoparticles. The MIC and MBC values ranged from 0.8 to 25 µg/mL and 3.1 to 50 µg/mL, respectively. Smaller and spherical AgNPs exhibited the highest activity, but all the AgNPs developed in this study exhibit bactericidal activity. There was no significant MIC increase after 20 passages to the AgNPs. Regarding the antibiofilm activity, MBICs ranged from 12.5 to 50 µg/mL. Again, smaller and spherical nanoparticles presented the best results with phenotypic inhibition of production of slime or exopolysaccharide (EPS) matrix. Thus, it was concluded that AgNPs have a promising potential against resistant bacteria and bacteria that grow on biofilms without inducing tolerance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11051-021-05314-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA