Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Soft Matter ; 18(4): 698-710, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35037925

RESUMO

Microfluidic technology enables judicious control of the process parameters on a small length scale, which in turn allows speeding up the destabilization of emulsion droplets interface in microfluidic devices. In this light, microfluidic channels can be used as an efficient tool to assess emulsion stability and to observe the behavior of the droplets immediately after their formation, enabling to determine whether or not they are prone to re-coalescence. Observation of the droplets after emulsifier adsorption also allows the investigation of emulsion stability over time. Both evaluations would contribute to determine emulsion stability aiming at specific applications in food and pharmaceutical industries. Furthermore, emulsion coalescence can also be performed under extremely controlled conditions within the microfluidic devices in order to explore emulsion droplets as micro-reactors (for regulated biological and chemical assays). Such microfluidic procedures can be performed either in confined environments or under dynamic flow conditions. Under confined environments, droplets are observed in fixed positions simulating different environmental conditions. On the other hand, with the scrutiny of emulsions under dynamic flow processes, it is possible to determine the behavior of the droplets when subjected to shear forces, comparable to those experienced in conventional emulsification techniques or even in pumping operations. Given the above, this paper reviews different microfluidic techniques (such as changing channel geometry or wettability) hitherto used to destabilize emulsions, mainly focusing on the specificities of each study, whether the droplets are destabilized in confined or dynamic flow processes. Thereby, by going deeper into this review, readers will be able to identify different strategies for emulsion destabilization (in order to understand stabilizing mechanisms or even to apply these droplets as micro-reactors), as this paper shows the particularities of the most recent studies and elucidates the current state-of-the-art of this microfluidic-related application.


Assuntos
Emulsificantes , Microfluídica , Emulsões , Dispositivos Lab-On-A-Chip
2.
Soft Matter ; 17(7): 1821-1833, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33399611

RESUMO

Coalescence is the most widely demonstrated mechanism for destabilizing emulsion droplets in microfluidic chambers. However, we find that depending on the channel wall surface functionalization, surface zeta potential, type of surfactant, characteristics of the oil as a dispersed phase, or even the presence of externally-induced stress, other different destabilization mechanisms can occur in subtle ways. In general, we observe four regimes leading to destabilization of concentrated emulsions: (i) coalescence, (ii) emulsion bursts, (iii) a combination of the two first mechanisms, attributed to the simultaneous occurrence of coalescence and emulsion bursts; and (iv) compaction of the droplet network that eventually destabilizes to fracture-like behavior. We correlate various physico-chemical properties (zeta potential, contact angle, interfacial tension) to understand their respective influence on the destabilization mechanisms. This work provides insights into possible ways to control or inflict emulsion droplet destabilization for different applications.

3.
Phys Chem Chem Phys ; 22(30): 17236-17246, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32685946

RESUMO

Surface interactions are an interplay of van der Waals adhesion forces with electrostatic charges. In colloidal deposition, at low ionic strengths, the Debye layer is sufficiently large to prevent particles from approaching the surface. It is only with the addition of higher salt concentrations, typically above 0.1 M, that surface charges are screened for interactions to take place via van der Waals-adhesion forces. This is true for repulsive charges, when both surfaces have similar charges and signs of the zeta potential are the same. However, with attractive charges, where zeta potential signs are opposite, the result is also opposite. By combining microfluidic experiments, theory, and numerical simulations, results show that when charges are attractive, particle deposition instead increases at low ionic strengths (at greater Debye lengths), at rates controlled by van der Waals forces but assisted by electrostatic forces. We propose a mechanism where particles approach the wall, mobilized by electrostatic attraction, up to a distance where van der Waals forces come into play, collecting the particles at the wall, which electrostatic forces alone are unable to achieve, owing to hindered diffusion. The present work thus allows us to understand the different mechanisms that govern deposition in the case where surface charges are opposite.

4.
Soft Matter ; 15(37): 7438-7447, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31502623

RESUMO

We investigate the kinetics of irreversible adsorption under the van der Waals regime, i.e. weakly Brownian polydisperse colloidal suspensions injected into shallow microchannels at high ionic strengths, where each suspension is represented by populations of particles with different particle sizes. We find that each population size of the particle in the suspension can be treated independently using an analytical solution based on the advection-diffusion equation and that the distribution of the adsorbed particles along the channel axis behaves according to a power law. The experimental measurements agree with Langevin simulations and are well accounted for by theory valid in the van der Waals regime. Operating in the van der Waals regime permits the present study to confirm the use of microfluidics as an effective in situ method to measure the Hamaker constant of particles under aqueous conditions.

5.
Soft Matter ; 14(34): 6994-7002, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30095846

RESUMO

Understanding evaporation or drying in granular media still remains complex despite recent advancements. Evaporation depends on liquid transport across a connected film network from the bulk to the surface. In this study, we investigate the stability of film networks as a function of the geometry of granular chains of spherical grains. Using a controlled experimental approach, we vary the grain arrangement or packing and measure the height of the liquid film network during evaporation as packing shifts from loose-packed to close-packed arrangement. This height can be calculated from an equilibrium between hydrostatic pressure and the capillary pressure difference in the vertical film network. Following a simulation approach using Surface Evolver, we evaluate the pressure variation due to dewetting of the meniscus volume in the grains in both the percolating front and evaporating front within the two-phase zone of air/water mixture. Results show good agreement between model and experiment. We find that above a "critical" packing angle, the liquid continuity is broken and films connections fragment into separate, isolated capillary bridges.

6.
Langmuir ; 33(26): 6471-6480, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28602093

RESUMO

Despite its considerable practical importance, the deposition of real Brownian particles transported in a channel by a liquid, at small Reynolds numbers, has never been described at a comprehensive level. Here, by coupling microfluidic experiments, theory, and numerics, we succeed in unravelling the problem for the case of straight channels at high salinity. We discover a broad regime of deposition (the van der Waals regime) in which particle-wall van der Waals interactions govern the deposition mechanism. We determine the range of existence of the regime, for which we calculate the concentration profiles, retention profiles, and deposition kinetics analytically. The retention profiles decay as the inverse of the square root of the distance from the entry, and the deposition kinetics are given by the expression [Formula: see text], where S is a dimensionless deposition function, A is the Hamaker constant, and ξL is a dimensionless parameter characterizing fluid flow properties. These findings are well supported by numerics. Experimentally, we find that the retention profiles behave as x-0.5±0.1 (where x is the distance from the channel entry) over three decades in scale, as predicted theoretically. By varying the flow conditions (speed, geometry, surface properties, and concentration) so as to cover four decades in ξL and taking the Hamaker constant as a free parameter, we accurately confirm the theoretical expression for the deposition kinetics. Operating in the van der Waals regime enables control of the deposition rates via surface chemistry. From a surface science perspective, working in the van der Waals regime enables us to measure the Hamaker constants of thousands of particles in a few minutes, a task that would take a much longer time to perform with standard AFM.

7.
Prog Mol Biol Transl Sci ; 187(1): 163-204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094774

RESUMO

Drug development is often a very long, costly, and risky process due to the lack of reliability in the preclinical studies. Traditional current preclinical models, mostly based on 2D cell culture and animal testing, are not full representatives of the complex in vivo microenvironments and often fail. In order to reduce the enormous costs, both financial and general well-being, a more predictive preclinical model is needed. In this chapter, we review recent advances in microfluidic 3D cell culture showing how its development has allowed the introduction of in vitro microphysiological systems, laying the foundation for organ-on-a-chip technology. These findings provide the basis for numerous preclinical drug discovery assays, which raise the possibility of using micro-engineered systems as emerging alternatives to traditional models, based on 2D cell culture and animals.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Microfluídica , Animais , Desenvolvimento de Medicamentos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Reprodutibilidade dos Testes
8.
Micromachines (Basel) ; 11(1)2020 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-31940876

RESUMO

Within the last decade, there has been increasing interest in liquid and solid foams for several industrial uses. In the biomedical field, liquid foams can be used as delivery systems for dermatological treatments, for example, whereas solid foams are frequently used as scaffolds for tissue engineering and drug screening. Most of the foam functionalities are largely correlated to their mechanical properties and their structure, especially bubble/pore size, shape, and interconnectivity. However, the majority of conventional foaming fabrication techniques lack pore size control which can induce important inhomogeneities in the foams and subsequently decrease their performance. In this perspective, new advanced technologies have been introduced, such as microfluidics, which offers a highly controlled production, allowing for design customization of both liquid foams and solid foams obtained through liquid-templating. This short review explores both the fabrication and the characterization of foams, with a focus on solid polymer foams, and sheds the light on how microfluidics can overcome some existing limitations, playing a crucial role in their production for biomedical applications, especially as scaffolds in tissue engineering.

9.
Sci Rep ; 9(1): 14195, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578384

RESUMO

We investigate certain aspects of the physical mechanisms of root growth in a granular medium and how these roots adapt to changes in water distribution induced by the presence of structural inhomogeneities in the form of solid intrusions. Physical intrusions such as a square rod added into the 2D granular medium maintain robust capillary action, pumping water from the more saturated areas at the bottom of the cell towards the less saturated areas near the top of the cell while the rest of the medium is slowly devoid of water via evaporation. The intrusion induces "preferential tropism" of roots by first generating a humidity gradient that attracts the root to grow towards it. Then it guides the roots and permits them to grow deeper into more saturated regions in the soil. This further allows more efficient access to available water in the deeper sections of the medium thereby resulting to increased plant lifetime.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Tropismo/fisiologia , Água/química , Umidade , Solo/química
10.
Phys Rev E ; 96(6-1): 062908, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29347312

RESUMO

We characterize the water repartition within the partially saturated (two-phase) zone (PSZ) during evaporation from mixed wettable porous media by controlling the wettability of glass beads, their sizes, and as well the surrounding relative humidity. Here, capillary numbers are low and under these conditions, the percolating front is stabilized by gravity. Using experimental and numerical analyses, we find that the PSZ saturation decreases with the Bond number, where packing of smaller particles have higher saturation values than packing made of larger particles. Results also reveal that the extent (height) of the PSZ, as well as water saturation in the PSZ, both increase with wettability. We also numerically calculate the saturation exclusively contained in connected liquid films and results show that values are less than the expected PSZ saturation. These results strongly reflect that the two-phase zone is not solely made up of connected capillary networks but also made of disconnected water clusters or pockets. Moreover, we also find that global saturation (PSZ + full wet zone) decreases with wettability, confirming that greater quantity of water is lost via evaporation with increasing hydrophilicity. These results show that connected liquid films are favored in more-hydrophilic systems while disconnected water pockets are favored in less-hydrophilic systems.

11.
Artigo em Inglês | MEDLINE | ID: mdl-25375487

RESUMO

We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-two-dimensional experimental setup composed of a random close packing of monodisperse glass beads. Using controlled experiments, we analyze the finger instabilities that develop from the wetting front as a function of fundamental granular (particle size) and fluid properties (rainfall, viscosity). These finger instabilities act as precursors for water channels, which serve as outlets for water drainage. We look into the characteristics of the homogeneous wetting front and channel size as well as estimate relevant time scales involved in the instability formation and the velocity of the channel fingertip. We compare our experimental results with that of the well-known prediction developed by Parlange and Hill [D. E. Hill and J. Y. Parlange, Soil Sci. Soc. Am. Proc. 36, 697 (1972)]. This model is based on linear stability analysis of the growth of perturbations arising at the interface between two immiscible fluids. Results show that, in terms of morphology, experiments agree with the proposed model. However, in terms of kinetics we nevertheless account for another term that describes the homogenization of the wetting front. This result shows that the manner we introduce the fluid to a porous medium can also influence the formation of finger instabilities. The results also help us to calculate the ideal flow rate needed for homogeneous distribution of water in the soil and minimization of runoff, given the grain size, fluid density, and fluid viscosity. This could have applications in optimizing use of irrigation water.

12.
Artigo em Inglês | MEDLINE | ID: mdl-25375532

RESUMO

Evaporation of water out of a soil involves complicated and well-debated mechanisms. When plant roots are added into the soil, water transfer between the soil and the outside environment is even more complicated. Indeed, plants provide an additional process of water transfer. Water is pumped by the roots, channeled to the leaf surface, and released into the surrounding air by a process called transpiration. Prediction of the evapotranspiration of water over time in the presence of roots helps keep track of the amount of water that remains in the soil. Using a controlled visual setup of a two-dimensional model soil consisting of monodisperse glass beads, we perform experiments on actual roots grown under different relative humidity conditions. We record the total water mass loss in the medium and the position of the evaporating front that forms within the medium. We then develop a simple analytical model that predicts the position of the evaporating front as a function of time as well as the total amount of water that is lost from the medium due to the combined effects of evaporation and transpiration. The model is based on fundamental principles of evaporation fluxes and includes empirical assumptions on the quantity of open stomata in the leaves, where water transpiration occurs. Comparison between the model and experimental results shows excellent prediction of the position of the evaporating front as well as the total mass loss from evapotranspiration in the presence of roots. The model also provides a way to predict the lifetime of a plant.


Assuntos
Meio Ambiente , Modelos Teóricos , Raízes de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Água , Umidade , Estômatos de Plantas/metabolismo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA