Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oncology ; 102(7): 574-584, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38104555

RESUMO

INTRODUCTION: We examine the heterogeneity and distribution of the cohort populations in two publicly used radiological image cohorts, the Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCIA TCGA KIRC) collection and 2019 MICCAI Kidney Tumor Segmentation Challenge (KiTS19), and deviations in real-world population renal cancer data from the National Cancer Database (NCDB) Participant User Data File (PUF) and tertiary center data. PUF data are used as an anchor for prevalence rate bias assessment. Specific gene expression and, therefore, biology of RCC differ by self-reported race, especially between the African American and Caucasian populations. AI algorithms learn from datasets, but if the dataset misrepresents the population, reinforcing bias may occur. Ignoring these demographic features may lead to inaccurate downstream effects, thereby limiting the translation of these analyses to clinical practice. Consciousness of model training biases is vital to patient care decisions when using models in clinical settings. METHODS: Data elements evaluated included gender, demographics, reported pathologic grading, and cancer staging. American Urological Association risk levels were used. Poisson regression was performed to estimate the population-based and sample-specific estimation for prevalence rate and corresponding 95% confidence interval. SAS 9.4 was used for data analysis. RESULTS: Compared to PUF, KiTS19 and TCGA KIRC oversampled Caucasian by 9.5% (95% CI, -3.7 to 22.7%) and 15.1% (95% CI, 1.5 to 28.8%), undersampled African American by -6.7% (95% CI, -10% to -3.3%), and -5.5% (95% CI, -9.3% to -1.8%). Tertiary also undersampled African American by -6.6% (95% CI, -8.7% to -4.6%). The tertiary cohort largely undersampled aggressive cancers by -14.7% (95% CI, -20.9% to -8.4%). No statistically significant difference was found among PUF, TCGA, and KiTS19 in aggressive rate; however, heterogeneities in risk are notable. CONCLUSION: Heterogeneities between cohorts need to be considered in future AI training and cross-validation for renal masses.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Inteligência Artificial , Negro ou Afro-Americano/estatística & dados numéricos , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/epidemiologia , Carcinoma de Células Renais/genética , Estudos de Coortes , Bases de Dados Factuais , Neoplasias Renais/patologia , Neoplasias Renais/genética , Neoplasias Renais/epidemiologia , Urologia , População Branca/estatística & dados numéricos , Brancos
2.
Cancers (Basel) ; 15(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894301

RESUMO

BACKGROUND: Challenges remain in determining the most effective treatment strategies and identifying patients who would benefit from adjuvant or neoadjuvant therapy in renal cell carcinoma. The objective of this review is to provide a comprehensive overview of biomarkers in metastatic renal cell carcinoma (mRCC) and their utility in prediction of treatment response, prognosis, and therapeutic monitoring in patients receiving systemic therapy for metastatic disease. METHODS: A systematic literature search was conducted using the PubMed database for relevant studies published between January 2017 and December 2022. The search focused on biomarkers associated with mRCC and their relationship to immune checkpoint inhibitors, targeted therapy, and VEGF inhibitors in the adjuvant, neoadjuvant, and metastatic settings. RESULTS: The review identified various biomarkers with predictive, prognostic, and therapeutic monitoring potential in mRCC. The review also discussed the challenges associated with anti-angiogenic and immune-checkpoint monotherapy trials and highlighted the need for personalized therapy based on molecular signatures. CONCLUSION: This comprehensive review provides valuable insights into the landscape of biomarkers in mRCC and their potential applications in prediction of treatment response, prognosis, and therapeutic monitoring. The findings underscore the importance of incorporating biomarker assessment into clinical practice to guide treatment decisions and improve patient outcomes in mRCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA