Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Pollut ; 208(Pt A): 125-136, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26189044

RESUMO

The present work assesses indoor air quality in stations of the Barcelona subway system. PM2.5 concentrations on the platforms of 4 subway stations were measured during two different seasons and the chemical composition was determined. A Positive Matrix Factorization analysis was performed to identify and quantify the contributions of major PM2.5 sources in the subway stations. Mean PM2.5 concentrations varied according to the stations design and seasonal periods. PM2.5 was composed of haematite, carbonaceous aerosol, crustal matter, secondary inorganic compounds, trace elements, insoluble sulphate and halite. Organic compounds such as PAHs, nicotine, levoglucosan and aromatic musk compounds were also identified. Subway PM2.5 source comprised emissions from rails, wheels, catenaries, brake pads and pantographs. The subway source showed different chemical profiles for each station, but was always dominated by Fe. Control actions on the source are important for the achievement of better air quality in the subway environment.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Ferrovias , Poluentes Atmosféricos/química , Monitoramento Ambiental , Compostos Orgânicos/análise , Tamanho da Partícula , Material Particulado/química , Estações do Ano , Espanha
2.
Sci Total Environ ; 505: 367-75, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25461038

RESUMO

Most particles breathed on rail subway platforms are highly ferruginous (FePM) and extremely small (nanometric to a few microns in size). High magnification observations of particle texture and chemistry on airborne PM10 samples collected from the Barcelona Metro, combined with published experimental work on particle generation by frictional sliding, allow us to propose a general model to explain the origin of most subway FePM. Particle generation occurs by mechanical wear at the brake-wheel and wheel-rail interfaces, where magnetic metallic flakes and splinters are released and undergo progressive atmospheric oxidation from metallic iron to magnetite and maghemite. Flakes of magnetite typically comprise mottled mosaics of octahedral nanocrystals (10-20 nm) that become pseudomorphed by maghemite. Continued oxidation results in extensive alteration of the magnetic nanostructure to more rounded aggregates of non-magnetic hematite nanocrystals, with magnetic precursors (including iron metal) still preserved in some particle cores. Particles derived from steel wheel and rails contain a characteristic trace element chemistry, typically with Mn/Fe=0.01. Flakes released from brakes are chemically very distinctive, depending on the pad composition, being always carbonaceous, commonly barium-rich, and texturally inhomogeneous, with trace elements present in nanominerals incorporated within the crystalline structure. In the studied subway lines of Barcelona at least there appears to be only a minimal aerosol contribution from high temperature processes such as sparking. To date there is no strong evidence that these chemically and texturally complex inhalable metallic materials are any more or less toxic than street-level urban particles, and as with outdoor air, the priority in subway air quality should be to reduce high mass concentrations of aerosol present in some stations.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Metais/análise , Ferrovias , Aerossóis , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Tamanho da Partícula , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA