RESUMO
In this study, we accessed culturable fungal assemblages present in the sediments of three lakes potentially impacted anthropogenically in the Fildes Peninsula, King George Island, Antarctica and identified 63 taxa. Cladosporium sp. 2, Pseudeurotium hygrophilum, and Pseudogymnoascus verrucosus were recovered from the sampled sediments of all lakes. High concentrations of metals and the lowest fungal diversity indices were detected in the sediments of the Central Lake, which can be influenced by human activities due to their proximity to research stations to those of the other two lakes, which were far from the Antarctic stations. At least one type of biological activity was demonstrated by 40 fungal extracts. Among these, P. hygrophilum, P. verrucosus, Penicillium glabrum, and Penicillium solitum demonstrated strong trypanocidal, herbicidal, and antifungal activities. Our results suggest that an increase of the anthropogenic activities in the region might have affected the microbial diversity and composition. In addition, the fungal diversity in these lakes may be a useful model to study the effect of anthropogenic activities in Antarctica. We isolated a diverse group of fungal taxa from Antarctic lake sediments, which have the potential to produce novel compounds for the both the medical and agriculture sectors.
Assuntos
Bioprospecção , Regiões Antárticas , Ascomicetos , Sedimentos Geológicos , Humanos , Ilhas , LagosRESUMO
We accessed the culturable mycobiota present in marine sediments at different depths in Antarctica Ocean. Acremonium fusidioides, Penicillium allii-sativi, Penicillium chrysogenum, Penicillium palitans, Penicillium solitum, and Pseudogymnoascus verrucosus were identified. Penicillium allii-sativi was the dominant species. At least one isolate of each species was capable to present antifungal, trypanocidal, leishmanicidal, antimalarial, nematocidal, or herbicidal activities. Penicillium produced extracts with strong trypanocidal and antimalarial activities, and the extracts of P. solitum and P. chrysogenum demonstrated strong antimalarial activities. Acremonium fusidioides and P. verrucosus displayed strong selective herbicidal properties. The 1H NMR signals for extracts of A. fusidioides, P. chrysogenum, and P. solitum indicated the presence of highly functionalized secondary metabolites, which may be responsible for the biological activities detected. In the deep marine Antarctic sediments, we detected fungal assemblages in which the Penicillium species were found to be dominant and demonstrated capabilities to survive and/or colonise that poly-extreme habitat. Penicillium being a polyextremophile Antarctic species, exhibited strong biological activities and the presence of aromatic compounds in its extracts may indicate that they are wild ancient strains with high genetic and biochemical potentials that enable them to produce bioactive compounds which can be researched in further studies and used in the chemotherapy of neglected tropical diseases as well as in agriculture.
Assuntos
Ascomicetos , Bioprospecção , Regiões Antárticas , Antifúngicos , Fungos , PenicilliumRESUMO
BACKGROUND: Several species of Aspidosperma plants are referred to as remedies for the treatment of malaria, especially Aspidosperma nitidum. Aspidosperma pyrifolium, also a medicinal plant, is used as a natural anti-inflammatory. Its fractionated extracts were assayed in vitro for activity against malaria parasites and for cytotoxicity. METHODS: Aspidosperma pyrifolium activity was evaluated against Plasmodium falciparum using extracts in vitro. Toxicity towards human hepatoma cells, monkey kidney cells or human monocytes freshly isolated from peripheral blood was also assessed. Anti-malarial activity of selected extracts and fractions that presented in vitro activity were tested in mice with a Plasmodium berghei blood-induced infection. RESULTS: The crude stem bark extract and the alkaloid-rich and ethyl acetate fractions from stem extract showed in vitro activity. None of the crude extracts or fractions was cytotoxic to normal monkey kidney and to a human hepatoma cell lines, or human peripheral blood mononuclear cells; the MDL50 values of all the crude bark extracts and fractions were similar or better when tested on normal cells, with the exception of organic and alkaloidic-rich fractions from stem extract. Two extracts and two fractions tested in vivo caused a significant reduction of P. berghei parasitaemia in experimentally infected mice. CONCLUSION: Considering the high therapeutic index of the alkaloidic-rich fraction from stem extract of A. pyrifolium, it makes the species a candidate for further investigation aiming to produce a new anti-malarial, especially considering that the active extract has no toxicity, i.e., no mutagenic effects in the genototoxicity assays, and that it has an in vivo anti-malarial effect. In its UPLC-HRMS analysis this fraction was shown to have two major components compatible with the bisindole alkaloid Leucoridine B, and a novel compound, which is likely to be responsible for the activity against malaria parasites demonstrated in in vitro tests.
Assuntos
Antimaláricos/farmacologia , Aspidosperma/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/administração & dosagem , Antimaláricos/isolamento & purificação , Antimaláricos/toxicidade , Brasil , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Feminino , Haplorrinos , Humanos , Malária/terapia , Camundongos , Carga Parasitária , Parasitemia , Extratos Vegetais/administração & dosagem , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Plasmodium berghei/isolamento & purificação , Resultado do TratamentoRESUMO
BACKGROUND: Several species of Aspidosperma (Apocynaceae) are used as treatments for human diseases in the tropics. Aspidosperma olivaceum, which is used to treat fevers in some regions of Brazil, contains the monoterpenoid indole alkaloids (MIAs) aspidoscarpine, uleine, apparicine, and N-methyl-tetrahydrolivacine. Using bio-guided fractionation and cytotoxicity testing in a human hepatoma cell line, several plant fractions and compounds purified from the bark and leaves of the plant were characterized for specific therapeutic activity (and selectivity index, SI) in vitro against the blood forms of Plasmodium falciparum. METHODS: The activity of A. olivaceum extracts, fractions, and isolated compounds was evaluated against chloroquine (CQ)-resistant P. falciparum blood parasites by in vitro testing with radiolabelled [3H]-hypoxanthine and a monoclonal anti-histidine-rich protein (HRPII) antibody. The cytotoxicity of these fractions and compounds was evaluated in a human hepatoma cell line using a 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, and the SI was calculated as the ratio between the toxicity and activity. Two leaf fractions were tested in mice with Plasmodium berghei. RESULTS: All six fractions from the bark and leaf extracts were active in vitro at low doses (IC50 < 5.0 µg/mL) using the anti-HRPII test, and only two (the neutral and basic bark fractions) were toxic to a human cell line (HepG2). The most promising fractions were the crude leaf extract and its basic residue, which had SIs above 50. Among the four pure compounds evaluated, aspidoscarpine in the bark and leaf extracts showed the highest SI at 56; this compound, therefore, represents a possible anti-malarial drug that requires further study. The acidic leaf fraction administered by gavage to mice with blood-induced malaria was also active. CONCLUSION: Using a bio-monitoring approach, it was possible to attribute the anti-P. falciparum activity of A. olivaceum to aspidoscarpine and, to a lesser extent, N-methyl-tetrahydrolivacine; other isolated MIA molecules were active but had lower SIs due to their higher toxicities. These results stood in contrast to previous work in which the anti-malarial activity of other Aspidosperma species was attributed to uleine.
Assuntos
Antimaláricos/farmacologia , Aspidosperma/química , Alcaloides Indólicos/farmacologia , Extratos Vegetais/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/isolamento & purificação , Antimaláricos/toxicidade , Brasil , Sobrevivência Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/toxicidade , Testes de Sensibilidade Parasitária , Casca de Planta/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/toxicidade , Folhas de Planta/químicaRESUMO
Introduction: Emergence of drug resistant strains of Plasmodium species has necessitated the search for novel antimalarials with unique mechanisms of action. Synthesis of hybrid compounds has been one approach to tackling this challenge. In this study, the synthesis of artesunate-ellagic acid hybrid compound (EA31) from ellagic acid and artesunate and its evaluation for antimalarial and antioxidant activities using in vitro and in vivo models were carried out. Method: EA31 was synthesized from artesunate and ellagic acid. The activities of the hybrid compound against Plasmodium falciparum W2 and P. berghei NK65 were evaluated, and its antioxidant activities were also determined. Results: The results revealed that EA31 was more active against P. falciparum W2 (chloroquine resistant) clone and less cytotoxic to buffalo green monkey kidney cell line compared to artesunate. EA31 was also active against Plasmodium berghei NK65 in vivo. The results revealed inhibition of ß-hematin formation as one of the mechanisms of action of EA31. EA31 also exhibited antioxidant activities. Conclusion: The results revealed that EA31 may exert dual action of killing malaria parasite and mopping the reactive oxygen species that mediate the secondary complications of malaria.
RESUMO
Malaria, Chagas disease, and leishmaniasis are tropical diseases caused by protozoan parasites of the genera Plasmodium, Trypanosoma and Leishmania, respectively. These diseases constitute a major burden on public health in several regions worldwide, mainly affecting low-income populations in economically poor countries. Severe side effects of currently available drug treatments and the emergence of resistant parasites need to be addressed by the development of novel drug candidates. Natural 2,5-Diketopiperazines (2,5-DKPs) constitute N-heterocyclic secondary metabolites with a wide range of biological activities of medicinal interest. Its structural and physicochemical properties make the 2,5-DKP ring a versatile, peptide-like, and stable pharmacophore attractive for synthetic drug design. In the present work, twenty-three novel synthetic 2,5-DKPs, previously synthesized through the versatile Ugi multicomponent reaction, were assayed for their anti-protozoal activities against P. falciparum, T. cruzi, and L. infantum. Some of the 2,5-DKPs have shown promising activities against the target protozoans, with inhibitory concentrations (IC50) ranging from 5.4 to 9.5 µg/mL. The most active compounds also show low cytotoxicity (CC50), affording selectivity indices ≥ 15. Results allowed for observing a clear relationship between the substitution pattern at the aromatic rings of the 2,5-DKPs and their corresponding anti-Plasmodium activity. Finally, calculated drug-like properties of the compounds revealed points for further structure optimization of promising drug candidates.
RESUMO
According to the World Health Organization, half of the World's population, approximately 3.3 billion people, is at risk for developing malaria. Nearly 700,000 deaths each year are associated with the disease. Control of the disease in humans still relies on chemotherapy. Drug resistance is a limiting factor, and the search for new drugs is important. We have designed and synthesized new 2-(trifluoromethyl)[1,2,4]triazolo[1,5-a]pyrimidine derivatives based on bioisosteric replacement of functional groups on the anti-malarial compounds mefloquine and amodiaquine. This approach enabled us to investigate the impact of: (i) ring bioisosteric replacement; (ii) a CF3 group substituted at the 2-position of the [1,2,4]triazolo[1,5-a]pyrimidine scaffold and (iii) a range of amines as substituents at the 7-position of the of heterocyclic ring; on in vitro activity against Plasmodium falciparum. P. falciparum dihydroorotate dehydrogenase (PfDHODH) through strong hydrogen bonds. The presence of a trifluoromethyl group at the 2-position of the [1,2,4]triazolo[1,5-a]pyrimidine ring led to increased drug activity. Thirteen compounds were found to be active, with IC50 values ranging from 0.023 to 20 µM in the anti-HRP2 and hypoxanthine assays. The selectivity index (SI) of the most active derivatives 5, 8, 11 and 16 was found to vary from 1,003 to 18,478.
Assuntos
Antimaláricos/farmacologia , Azóis/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Azóis/síntese química , Azóis/química , Morte Celular/efeitos dos fármacos , Cloroquina/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Células Hep G2 , Humanos , Modelos Moleculares , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Quinolinas/químicaRESUMO
Plasmodium vivax blood-stage invasion into reticulocyte is critical for parasite development. Thus, validation of novel parasite invasion ligands is essential for malaria vaccine development. Recently, we demonstrated that EBP2, a Duffy binding protein (DBP) paralog, is antigenically distinct from DBP and could not be functionally inhibited by anti-DBP antibodies. Here, we took advantage of a small outbreak of P.vivax malaria, located in a non-malarious area of Brazil, to investigate for the first time IgM/IgG antibodies against EBP2 and DEKnull-2 (an engineering DBPII vaccine) among individuals who had their first and brief exposure to P.vivax (16 cases and 22 non-cases). Our experimental approach included 4 cross sectional surveys at 3-month interval (12-month follow-up). The results demonstrated that while a brief initial P.vivax infection was not efficient to induce IgM/ IgG antibodies to either EBP2 or DEKnull-2, IgG antibodies against DEKnull-2 (but not EBP2) were boosted by recurrent blood-stage infections following treatment. Of interest, in most recurrent P. vivax infections (4 out of 6 patients) DEKnull-2 IgG antibodies were sustained for 6 to 12 months. Polymorphisms in the ebp2 gene does not seem to explain EBP2 low immunogenicity as the ebp2 allele associated with the P.vivax outbreak presented high identity to the original EBP2 isolate used as recombinant protein. Although EBP2 antibodies were barely detectable after a primary episode of P.vivax infection, EBP2 was highly recognized by serum IgG from long-term malaria-exposed Amazonians (range from 35 to 92% according to previous malaria episodes). Taken together, the results showed that individuals with a single and brief exposure to P.vivax infection develop very low anti-EBP2 antibodies, which tend to increase after long-term malaria exposure. Finally, the findings highlighted the potential of DEKnull-2 as a vaccine candidate, as in non-immune individuals anti-DEKnull-2 IgG antibodies were boosted even after a brief exposure to P.vivax blood stages.
Assuntos
Malária Vivax , Malária , Anticorpos Antiprotozoários , Formação de Anticorpos , Antígenos de Protozoários/genética , Estudos Transversais , Humanos , Imunoglobulina G , Imunoglobulina M , Malária Vivax/parasitologia , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genéticaRESUMO
Malaria is an endemic disease that affected 229 million people and caused 409 thousand deaths, in 2019. Disease control is based on early diagnosis and specific treatment with antimalarial drugs since no effective vaccines are commercially available to prevent the disease. Drug chemotherapy has a strong historical link to the use of traditional plant infusions and other natural products in various cultures. The research based on such knowledge has yielded two drugs in medicine: the alkaloid quinine from Cinchona species, native in the Amazon highland rain forest in South America, and artemisinin from Artemisia annua, a species from the millenary Chinese medicine. The artemisinin-based combination therapies (ACTs), proven to be highly effective against malaria parasites, and considered as "the last bullet to fight drug-resistant malaria parasites," have limited use now due to the emergence of multidrug resistance. In addition, the limited number of therapeutic options makes urgent the development of new antimalarial drugs. This review focuses on the antimalarial activities of 90 plant species obtained from a search using Pubmed database with keywords "antimalarials," "plants" and "natural products." We selected only papers published in the last 10 years (2011-2020), with a further analysis of those which were tested experimentally in malaria infected mice. Most plant species studied were from the African continent, followed by Asia and South America; their antimalarial activities were evaluated against asexual blood parasites, and only one species was evaluated for transmission blocking activity. Only a few compounds isolated from these plants were active and had their mechanisms of action delineated, thereby limiting the contribution of these medicinal plants as sources of novel antimalarial pharmacophores, which are highly necessary for the development of effective drugs. Nevertheless, the search for bioactive compounds remains as a promising strategy for the development of new antimalarials and the validation of traditional treatments against malaria. One species native in South America, Ampelozyzyphus amazonicus, and is largely used against human malaria in Brazil has a prophylactic effect, interfering with the viability of sporozoites in in vitro and in vivo experiments.
RESUMO
We recovered 195 fungal isolates from the sediments of different lakes in the Antarctic Peninsula, which were screened to detect bioactive compounds. Forty-two taxa belonging to the phyla Ascomycota, Basidiomycota, and Mortierellomycota were identified. Thelebolus globosus, Antarctomyces psychrotrophicus, Pseudogymnoascus verrucosus, Vishniacozyma victoriae, and Phenoliferia sp. were found to be the most prevalent. The fungal assemblages showed high diversity and richness, but low dominance values. However, the diversity indices and fungal distribution ranged according to the different lake sediments. Sixty fungal extracts displayed at least one biological activity against the evaluated targets. Among them, Pseudogymnoascus destructans showed selective trypanocidal activity, Cladosporium sp. 1 and Trichoderma polysporum showed antifungal activity, and Pseudogymnoascus appendiculatus and Helotiales sp. showed high herbicidal activity. We detected a rich and diverse fungal community composed of cold cosmopolitan and psychrophilic endemic taxa recognized as decomposers, symbiotics, pathogens, and potential new species, in the sediments of Antarctic lakes. The dynamics and balance of this fungal community represents an interesting aquatic web model for further ecological and evolutionary studies under extreme conditions and potential climate changes in the regions. In addition, we detected fungal taxa and isolates able to produce bioactive compounds that may represent the source of prototype molecules for applications in medicine and agriculture.
Assuntos
Fungos/isolamento & purificação , Fungos/metabolismo , Sedimentos Geológicos/microbiologia , Lagos/microbiologia , Micobioma , Animais , Regiões Antárticas , Antifúngicos/análise , Antifúngicos/farmacologia , Antiprotozoários/análise , Antiprotozoários/farmacologia , Antivirais/análise , Antivirais/farmacologia , Ascomicetos/classificação , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Basidiomycota/classificação , Basidiomycota/crescimento & desenvolvimento , Basidiomycota/isolamento & purificação , Basidiomycota/metabolismo , Biodiversidade , Bioprospecção , Linhagem Celular , Fungos/classificação , Fungos/crescimento & desenvolvimento , Herbicidas/análise , Herbicidas/farmacologiaRESUMO
Malaria remains one of the most serious global infectious diseases. An important target for antimalarial chemotherapy is the enzyme dihydroorotate dehydrogenase from Plasmodium falciparum (PfDHODH), which is responsible for the conversion of dihydroorotate to orotate in the de novo pyrimidine biosynthetic pathway. In this study, we have designed and synthesized fifteen 7-arylpyrazolo[1,5-a]pyrimidine derivatives using ring bioisosteric replacement and molecular hybridization of functional groups based on the highly active 5-methyl-N-(naphthalen-2-yl)-2-(trifluoromethyl)- [1,2,4]triazolo[1,5-a]pyrimidin-7-amine. The compounds were tested against Plasmodium falciparum, as antimalarials in mice with P. berghei, and as inhibitors of PfDHODH. Thirteen compounds were found to be active against P. falciparum, with IC50 values ranging from 1.2 ± 0.3 to 92 ± 26 µM in the anti-HRP2 and hypoxanthine assays. Four compounds showed the highest selective index (SI), which is a ratio between cytotoxicity and activity in vitro. The inhibition of PfDHODH showed that compound 30 (R2 = CH3; R5 = CF3; Ar = 7-ß-naphthyl) displayed higher and selective inhibitory activity, with IC50 = 0.16 ± 0.01 µM, followed by 25 (R2 = CH3; R5 = CH3; Ar = 7-ß-Naphthyl) and 19 (R2 = CF3; R5 = CF3; Ar = 7-ß-naphthyl), with IC50 = 4 ± 1 µM and 6 ± 1 µM, respectively. The trifluoromethyl group at the 2- or 5-positions of the pyrazolo[1,5-a]pyrimidine ring led to increased drug activity. The docking results agreed with the values obtained from enzymatic assays.
Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Antimaláricos/química , Antimaláricos/metabolismo , Antimaláricos/toxicidade , Linhagem Celular , Di-Hidro-Orotato Desidrogenase , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/toxicidade , Humanos , Camundongos , Simulação de Acoplamento Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Conformação Proteica , Pirimidinas/metabolismo , Pirimidinas/toxicidadeRESUMO
Plasmodium vivax Duffy binding protein (DBP) is functionally important in the erythrocyte invasion process and provides a logical target for vaccine-mediated immunity. In the current study, we demonstrated that DBP is naturally immunogenic in different populations of the Brazilian Amazon, and the proportions of DBP IgG positive subjects increased with exposure to malaria, reaching a peak in those subjects with long-term exposure (> 15 years) in the Amazon area. This profile of antibody response was significantly different from the one observed for the P. vivax merozoite surface protein 1 (MSP1(19)), which was relatively uniform in areas with markedly different levels of malaria transmission. In a small sample of adults with symptomless P. vivax infection, we could not detect any significant correlation between antibodies against these P. vivax proteins and asymptomatic infection. Our study provided an additional insight by demonstrating cumulative exposure as a determinant that acts independently of host age in generation of anti-DBP IgG response.
Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Adolescente , Adulto , Animais , Brasil , Criança , Ensaio de Imunoadsorção Enzimática , Humanos , Malária Vivax/transmissão , Pessoa de Meia-IdadeAssuntos
Antígenos de Protozoários/genética , Plasmodium vivax/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Adolescente , Adulto , Animais , Antígenos de Protozoários/química , Brasil , Humanos , Ligantes , Pessoa de Meia-Idade , Plasmodium vivax/isolamento & purificação , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Receptores de Superfície Celular/químicaRESUMO
Duffy binding protein (DBP), a leading malaria vaccine candidate, plays a critical role in Plasmodium vivax erythrocyte invasion. Sixty-eight of 366 (18.6%) subjects had IgG anti-DBP antibodies by enzyme-linked immunosorbent assay (ELISA) in a community-based cross-sectional survey in the Brazilian Amazon Basin. Despite continuous exposure to low-level malaria transmission, the overall seroprevalence decreased to 9.0% when the population was reexamined 12 months later. Antibodies from 16 of 50 (36.0%) subjects who were ELISA-positive at the baseline were able to inhibit erythrocyte binding to at least one of two DBP variants tested. Most (13 of 16) of these subjects still had inhibitory antibodies when reevaluated 12 months later. Cumulative exposure to malaria was the strongest predictor of DBP seropositivity identified by multiple logistic regression models in this population. The poor antibody recognition of DBP elicited by natural exposure to P. vivax in Amazonian populations represents a challenge to be addressed by vaccine development strategies.