Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(5)2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36903543

RESUMO

Thermal polymorphism in the alkali-metal salts incorporating the icosohedral monocarba-hydridoborate anion, CB11H12-, results in intriguing dynamical properties leading to superionic conductivity for the lightest alkali-metal analogues, LiCB11H12 and NaCB11H12. As such, these two have been the focus of most recent CB11H12- related studies, with less attention paid to the heavier alkali-metal salts, such as CsCB11H12. Nonetheless, it is of fundamental importance to compare the nature of the structural arrangements and interactions across the entire alkali-metal series. Thermal polymorphism in CsCB11H12 was investigated using a combination of techniques: X-ray powder diffraction; differential scanning calorimetry; Raman, infrared, and neutron spectroscopies; and ab initio calculations. The unexpected temperature-dependent structural behavior of anhydrous CsCB11H12 can be potentially justified assuming the existence of two polymorphs with similar free energies at room temperature: (i) a previously reported, ordered R3 polymorph stabilized upon drying and transforming first to R3c symmetry near 313 K and then to a similarly packed but disordered I43d polymorph near 353 K and (ii) a disordered Fm3 polymorph that initially appears from the disordered I43d polymorph near 513 K along with another disordered high-temperature P63mc polymorph. Quasielastic neutron scattering results indicate that the CB11H12- anions in the disordered phase at 560 K are undergoing isotropic rotational diffusion, with a jump correlation frequency [1.19(9) × 1011 s-1] in line with those for the lighter-metal analogues.

2.
Inorg Chem ; 61(15): 5813-5823, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35363480

RESUMO

The crystal structures of three thermal polymorphs (I, II, and III) for each isomer of closo-dicarbadodecaboranes C2B10H12 (ortho, meta, and para) have been determined by combining synchrotron radiation X-ray powder diffraction and density functional theory calculations. The structures are in agreement with previous calorimetric and spectroscopic studies. The difference between rotatory phases (plastic crystals) I and II lies in isotropic rotations in the former and anisotropic rotations of the icosahedral clusters in the latter. Phase I is the cubic close packing (ccp) of rotating closo-molecules C2B10H12 in the space group Fm3̅. Phase II is the ccp of rotating closo-molecules C2B10H12 in the cubic space group Pa3̅. The preferred rotational axis in II varies with the isomer. The ordered phases III are orthorhombic (meta) or monoclinic (ortho and para) deformations of the cubic unit cell of the disordered phases I and II. The ordering in the phase III of the ortho-isomer carrying the biggest electrical dipole moment creates a twofold superstructure w.r.t. the cubic unit cell. The thermal polymorphism for C2B10H12 and related metal salts can be explained by division of the cohesive intercluster interactions into two categories (i) dispersive cohesive interaction with additional Coulombic components in the metal salts and (ii) anisotropic local interaction resulting from nonuniform charge distribution around icosahedral clusters. The local interactions are averaged out by thermally activated cluster dynamics (rotations and rotational jumps) which effectively increase the symmetry of the cluster. The C2B10H12 molecules resist at least as well as the CB11H12- anion to the oxidation, and both clusters form easily a mixed compound. This allows designing solid electrolytes such as Nax(CB11H12)x(C2B10H12)1-x, where the cation content may be varied and the temperature of transition into the disordered conducting phase is decreased.

3.
Inorg Chem ; 61(32): 12708-12718, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917192

RESUMO

A new type of hybrid compound, combining properties of MOFs and borohydrides, was synthesized solvothermally using Mg(BH4)2 and imidazole as precursors. Material in the form of acetonitrile solvate with formula [Mg3{(Im)BH2(Im)}6(ImH)6]·CH3CN crystallizes in the space group R3̅, having the unit cell parameters a = 15.1942(2) Å and c = 28.3157(3) Å as determined by single crystal X-ray diffraction. The structure was further investigated by solid-state NMR and DFT quantum chemical calculations. The main feature of the structure, reported here for the first time, is a linear trinuclear complex, where octahedrally nitrogen-coordinated Mg2+ ions are bridged with {(Im)BH2(Im)}- units, forming inside voids of 4.6 Å in diameter between the magnesium ions. Polar intermolecular interactions hold the molecules in a dense rhombohedral stacking, where a disordered acetonitrile molecule plays a cohesive role. The compound is stable in air and upon heating to about 160 °C. Using an alternative synthesis method from an imidazole melt, an imidazole solvate with the formula [Mg3{(Im)BH2(Im)}6(ImH)6]·ImH and a very similar crystal structure to acetonitrile solvate was prepared. It is stable up to 220 °C. Upon further heating, it transformed into a layered structure with the formula Mg(Im3BH)2, space group P3̅1c, and unit cell parameters a = 8.7338(9) Å and c = 17.621(2) Å determined by synchrotron powder diffraction. Besides its structural novelty, two types of potentially reactive hydrogens, bonded to boron and nitrogen in the same molecule, make the material highly interesting for future investigations in the fields of energy storage applications.

4.
Inorg Chem ; 60(15): 10943-10957, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34251804

RESUMO

Metal closo-borates and their derivatives have shown promise in several fields of application from cancer therapy to solid-state electrolytes partly owing to their stability in aqueous solutions and high thermal stability. We report the synthesis and structural analysis of α- and ß-CaB10H10, which are structurally and energetically similar, both showing a tetrahedral coordination of Ca2+ to four closo-borate cages. The main distinctions between the α- and ß-polymorph are found in the crystal system (monoclinic or orthorhombic), topology (wurtzite or cag), and the degree of displacement of Ca2+ from the center of the coordination tetrahedron. Neutron vibrational spectroscopy measurements further revealed distinct perturbations in the cation-anion interactions arising from the different crystal structures. We also synthesized and structurally investigated five stoichiometric hydrates, CaB10H10·xH2O, x = 1, 4, 5, 6, and 7, and discovered an order-disorder polymorphic transition, α- to ß-CaB10H10·6H2O. The hydrates reveal a rich structural diversity with ordered structures, CaB10H10·xH2O, x = 1, 4, 5, 6, and 7, as well as disordered structures, x = 6 and 8. The latter allow for a continuum of compositions within 7-8 molecules of crystal water. The DFT-optimized experimental crystal structures reveal complex networks of three types of hydrogen interactions: dihydrogen bonds, B-Hδ-···+δH-O; hydrogen-hydrogen interactions, B-H···H-B; and hydrogen bonds, O-Hδ+···-δO-H. A rather short B-H···H-B (2.14 Å) interaction is observed for CaB10H10·5H2O, which is locally stabilized by four hydrogen bonds.

5.
Inorg Chem ; 59(17): 12733-12747, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32799455

RESUMO

Metal borohydrides are a fascinating and continuously expanding class of materials, showing promising applications within many different fields of research. This study presents 17 derivatives of the hydrogen-rich ammonium borohydride, NH4BH4, which all exhibit high gravimetric hydrogen densities (>9.2 wt % of H2). A detailed insight into the crystal structures combining X-ray diffraction and density functional theory calculations exposes an intriguing structural variety ranging from three-dimensional (3D) frameworks, 2D-layered, and 1D-chainlike structures to structures built from isolated complex anions, in all cases containing NH4+ countercations. Dihydrogen interactions between complex NH4+ and BH4- ions contribute to the structural diversity and flexibility, while inducing an inherent instability facilitating hydrogen release. The thermal stability of the ammonium metal borohydrides, as a function of a range of structural properties, is analyzed in detail. The Pauling electronegativity of the metal, the structural dimensionality, the dihydrogen bond length, the relative amount of NH4+ to BH4-, and the nearest coordination sphere of NH4+ are among the most important factors. Hydrogen release usually occurs in three steps, involving new intermediate compounds, observed as crystalline, polymeric, and amorphous materials. This research provides new opportunities for the design and tailoring of novel functional materials with interesting properties.

6.
Phys Chem Chem Phys ; 22(17): 9204-9209, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32232248

RESUMO

Light weight and cheap electrolytes with fast multi-valent ion conductivity can pave the way for future high-energy density solid-state batteries, beyond the lithium-ion battery. Here we present the mechanism of Mg-ion conductivity of monoammine magnesium borohydride, Mg(BH4)2·NH3. Density functional theory calculations (DFT) reveal that the neutral molecule (NH3) in Mg(BH4)2·NH3 is exchanged between the lattice and interstitial Mg2+ facilitated by a highly flexible structure, mainly owing to a network of di-hydrogen bonds, N-Hδ+-δH-B and the versatile coordination of the BH4- ligand. DFT shows that di-hydrogen bonds in inorganic matter and hydrogen bonds in bio-materials have similar bond strengths and bond lengths. As a result of the high structural flexibiliy, the Mg-ion conductivity is dramatically improved at moderate temperature, e.g. σ(Mg2+) = 3.3 × 10-4 S cm-1 at T = 80 °C for Mg(BH4)2·NH3, which is approximately 8 orders of magnitude higher than that of Mg(BH4)2. Our results may inspire a new approach for the design and discovery of unprecedented multivalent ion conductors.

7.
Inorg Chem ; 58(10): 6927-6933, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31050419

RESUMO

The first bimetallic imidazolates containing alkali and alkaline earth metals, NaMgIm3 and KMgIm3, respectively, are prepared by mechanochemical synthesis and are reported in this paper. NaMgIm3 has been prepared by the reaction between NaIm and Mg(BH4)2 as well as directly from NaIm and MgIm2. Structural evolution and thermal stability were followed by an in situ high-temperature X-ray powder diffraction experiment utilizing synchrotron radiation. In both compounds, the imidazolate ligand is connected to four metal cations forming a complex three-dimensional network with channels running along the c-direction. NaMgIm3 and KMgIm3 are the first members of a new family of imidazolate frameworks with stp topology. The formation of mixed-alkali-metal imidazolate compounds is thermodynamically controlled. LiIm and MgIm2 have not yielded a mixed-metal compound, while KIm reacts swiftly and forms KMgIm3.

8.
Inorg Chem ; 57(6): 3197-3205, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29512391

RESUMO

The crystal structure of a mixed amide-imide phase, RbMgND2ND, has been solved in the orthorhombic space group Pnma ( a = 9.55256(31), b = 3.70772(11) and c = 10.08308(32) Å). A new metal amide-hydride solid solution, Rb(NH2) xH(1- x), has been isolated and characterized in the entire compositional range. The profound analogies, as well as the subtle differences, with the crystal chemistry of KMgND2ND and K(NH2) xH1- x are thoroughly discussed. This approach suggests that the comparable performances obtained using K- and Rb-based additives for the Mg(NH2)2- 2LiH and 2LiN H2-MgH2 hydrogen storage systems are likely to depend on the structural similarities of possible reaction products and intermediates.

9.
Chem Soc Rev ; 46(5): 1565-1634, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28218318

RESUMO

A wide variety of metal borohydrides, MBH4, have been discovered and characterized during the past decade, revealing an extremely rich chemistry including fascinating structural flexibility and a wide range of compositions and physical properties. Metal borohydrides receive increasing interest within the energy storage field due to their extremely high hydrogen density and possible uses in batteries as solid state ion conductors. Recently, new types of physical properties have been explored in lanthanide-bearing borohydrides related to solid state phosphors and magnetic refrigeration. Two major classes of metal borohydride derivatives have also been discovered: anion-substituted compounds where the complex borohydride anion, BH4-, is replaced by another anion, i.e. a halide or amide ion; and metal borohydrides modified with neutral molecules, such as NH3, NH3BH3, N2H4, etc. Here, we review new synthetic strategies along with structural, physical and chemical properties for metal borohydrides, revealing a number of new trends correlating composition, structure, bonding and thermal properties. These new trends provide general knowledge and may contribute to the design and discovery of new metal borohydrides with tailored properties towards the rational design of novel functional materials. This review also demonstrates that there is still room for discovering new combinations of light elements including boron and hydrogen, leading to complex hydrides with extreme flexibility in composition, structure and properties.

10.
Anal Chem ; 89(24): 13176-13181, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29131937

RESUMO

The renewed interest of mechanochemistry as an ecofriendly synthetic route has inspired original methodologies to probe reactions, with the aim to rationalize unknown mechanisms. Recently, Friscic et al. ( Nat. Chem. 2013 , 5 , 66 - 73 , DOI: 10.1038/nchem.1505 ) monitored the progress of milling reactions by synchrotron X-ray powder diffraction (XRPD). For the first time, it was possible to acquire directly information during a mechanochemical process. This new methodology is still in its early stages, and its development will definitively transform the fundamental understanding of mechanochemistry. A new type of in situ ball mill setup has been developed at the Materials Science beamline (Swiss Light Source, Paul Scherrer Institute, Switzerland). Its particular geometry, described here in detail, results in XRPD data displaying significantly lower background and much sharper Bragg peaks, which in turn allow more sophisticated analysis of mechanochemical processes, extending the limits of the technique.

11.
Inorg Chem ; 56(9): 5006-5016, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28398061

RESUMO

Three different types of anion packing, i.e., hexagonal close packed (hcp), cubic close packed (ccp), and body centered cubic (bcc), are investigated experimentally and with ab initio calculations in the model system Na2B12H12. Solvent free and water assisted mechanical grinding provide polycrystalline samples for temperature-dependent synchrotron radiation X-ray powder diffraction and electrochemical impedance spectroscopy. It is shown that among the common close packed lattices, the hcp anionic backbone creates very favorable conditions for three-dimensional ionic conduction pathways, comprised of O-O, T-T, and T-O-T (O for octahedral, T for tetrahedral) cation hops. The hcp lattice is stable with respect to ccp and bcc lattices only at higher volumes per formula unit, which is achieved either by cationic substitution with larger cations or partial substitution of hydrogen by iodine on the closo-anion. It is found that the partial cationic substitution of sodium with lithium, potassium, or cesium does not lead to enhanced conductivity due to the obstruction of the conduction pathway by the larger cation located on the octahedral site. Substitution on the closo-anion itself shows remarkable positive effects, the ionic conductivity of Na2B12H12-xIx reaching values of close to 10-1 S cm-1 at a rather low temperature of 360 K. While the absolute value of σ is comparable to that of NaCB11H12, the temperature at which it is attained is approximately 20 K lower. The activation energy of 140 meV is determined from the Arrhenius relation and among the lowest ever reported for a Na-conducting solid.

12.
Inorg Chem ; 55(19): 9748-9756, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27622390

RESUMO

Rare earth metal borohydrides show a number of interesting properties, e.g., Li ion conductivity and luminescence, and the series of materials is well explored. However, previous attempts to obtain M(BH4)3 (M = La, Ce) by reacting MCl3 and LiBH4 yielded LiM(BH4)3Cl. Here, a synthetic approach is presented, which allows the isolation of M(BH4)3 (M = La, Ce) via formation of intermediate complexes with dimethyl sulfide. The cubic c-Ce(BH4)3 (Fm3̅c) is isostructural to high-temperature polymorphs of A(BH4)3 (A = Y, Sm, Er, Yb) borohydrides. The larger size of the Ce3+ ion makes the empty void in the open ReO3-type framework structure potentially accessible to small guest molecules like H2. Another new rhombohedral polymorph, r-M(BH4)3 (M = La, Ce), is a closed form of the framework, prone to stacking faults. The new compounds M(BH4)3 (M = La, Ce) can be combined with LiCl in an addition reaction to form LiM(BH4)3Cl also known as Li4[M4(BH4)12Cl4]; the latter contains the unique tetranuclear cluster [M4(BH4)12Cl4]4- and shows high Li-ion conductivity. This reaction pathway opens a way to synthesize a series of A4[M4(BH4)12X4] (M = La, Ce) compounds with different anions (X) and metal ions (A) and potentially high ion conductivity.

13.
Inorg Chem ; 55(14): 7090-7, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27351948

RESUMO

Borohydrides have attained high interest in the past few years due to their high volumetric and gravimetric hydrogen content. Synthesis of di/trimetallic borohydride is a way to alter the thermodynamics of hydrogen release from borohydrides. Previously reported preparations of M(BH4)2 involved chloride containing species such as SrCl2. The presence of residual chloride (or other halide) ions in borohydrides may change their thermodynamic behavior and their decomposition pathway. Pure monometallic borohydrides are needed to study decomposition products without interference from halide impurities. They can also be used as precursors for synthesizing di/trimetallic borohydrides. In this paper we present a way to synthesize halide free alkaline earth metal (Sr, Ba) and europium borohydrides starting with the respective hydrides as precursors. Two novel high temperature polymorphs of Sr and Eu borohydrides and four polymorphs of Ba borohydride have been characterized by synchrotron X-ray powder diffraction, thermal analysis, and Raman and infrared spectroscopy and supported by periodic DFT calculations. The decomposition routes of these borohydrides have also been investigated. In the case of the decomposition of strontium and europium borohydrides, the metal borohydride hydride (M(BH4)H3, M = Sr, Eu) is observed and characterized. Periodic DFT calculations performed on room temperature Ba(BH4)2 revealed the presence of bidentate and tridentate borohydrides.

14.
Langmuir ; 31(48): 13221-9, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26575589

RESUMO

Elongated plasmonic nanoparticles show superior optical properties when compared to spherical ones. Facile, versatile and cost-effective bottom-up approaches for fabrication of anisotropic nanoparticles in solution have been developed. However, fabrication of 2-D plasmonic templates from elongated nanoparticles with spatial arrangement at the surface is still a challenge. We used controlled seed-mediated growth in the presence of porous and functionalized surface of flexible polydimethylsiloxane (PDMS) templates to provide directional growth and formation of elongated gold nanoparticles (AuNPs). Atomic force microscopy (AFM) and spectroscopy revealed embedding of the particles within the functionalized porous surface of PDMS. Nanoparticles shapes were observed with transmission electron microscope (TEM), UV-Vis spectroscopy, and X-ray powder diffraction (XRPD) measurements, which revealed an overall orientation of particles at the surface. Anisotropic and oriented particles on a flexible substrate are of interest for sensing applications.

15.
Inorg Chem ; 54(15): 7402-14, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26196159

RESUMO

Fourteen solvent- and halide-free ammine rare-earth metal borohydrides M(BH4)3·nNH3, M = Y, Gd, Dy, n = 7, 6, 5, 4, 2, and 1, have been synthesized by a new approach, and their structures as well as chemical and physical properties are characterized. Extensive series of coordination complexes with systematic variation in the number of ligands are presented, as prepared by combined mechanochemistry, solvent-based methods, solid-gas reactions, and thermal treatment. This new synthesis approach may have a significant impact within inorganic coordination chemistry. Halide-free metal borohydrides have been synthesized by solvent-based metathesis reactions of LiBH4 and MCl3 (3:1), followed by reactions of M(BH4)3 with an excess of NH3 gas, yielding M(BH4)3·7NH3 (M = Y, Gd, and Dy). Crystal structure models for M(BH4)3·nNH3 are derived from a combination of powder X-ray diffraction (PXD), (11)B magic-angle spinning NMR, and density functional theory (DFT) calculations. The structures vary from two-dimensional layers (n = 1), one-dimensional chains (n = 2), molecular compounds (n = 4 and 5), to contain complex ions (n = 6 and 7). NH3 coordinates to the metal in all compounds, while BH4(-) has a flexible coordination, i.e., either as a terminal or bridging ligand or as a counterion. M(BH4)3·7NH3 releases ammonia stepwise by thermal treatment producing M(BH4)3·nNH3 (6, 5, and 4), whereas hydrogen is released for n ≤ 4. Detailed analysis of the dihydrogen bonds reveals new insight about the hydrogen elimination mechanism, which contradicts current hypotheses. Overall, the present work provides new general knowledge toward rational materials design and preparation along with limitations of PXD and DFT for analysis of structures with a significant degree of dynamics in the structures.

16.
Chimia (Aarau) ; 68(1-2): 38-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24801695

RESUMO

'Real life' energy-related materials such as solid-state hydrogen storage compounds or components of electrochemical cells are usually polycrystalline, poorly crystallized, highly reactive and dynamic systems. Powder diffraction at modern high brilliance X-ray sources is the most useful tool to investigate such systems because it is easy, fast and extremely versatile with respect to measurement conditions as well as in situ setups. However, it is in the nature of these systems that they undergo processes that cannot be investigated by diffraction alone. The central role in hydrogen storage materials is played by hydrogen itself, the worst X-ray scatterer in the periodic system. Gas release, the purpose of a hydrogen storage material, is not detected by diffraction. Amorphous components are badly characterized. We want to show how a complementary approach combining different methods allows to overcome limitations imposed on powder diffraction by the sample nature of 'real' hydrogen storage materials.

17.
Chimia (Aarau) ; 68(1): 38-44, 2014 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-28982436

RESUMO

'Real life' energy-related materials such as solid-state hydrogen storage compounds or components of electrochemical cells are usually polycrystalline, poorly crystallized, highly reactive and dynamic systems. Powder diffraction at modern high brilliance X-ray sources is the most useful tool to investigate such systems because it is easy, fast and extremely versatile with respect to measurement conditions as well as in situ setups. However, it is in the nature of these systems that they undergo processes that cannot be investigated by diffraction alone. The central role in hydrogen storage materials is played by hydrogen itself, the worst X-ray scatterer in the periodic system. Gas release, the purpose of a hydrogen storage material, is not detected by diffraction. Amorphous components are badly characterized. We want to show how a complementary approach combining different methods allows to overcome limitations imposed on powder diffraction by the sample nature of 'real' hydrogen storage materials.

18.
Chimia (Aarau) ; 68(12): 893-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26508615

RESUMO

To celebrate the International Year of Crystallography among the general public, a consortium of chemists, physicists and crystallographers of the University of Geneva organised in Spring 2014 an incentive crystal growth contest for Geneva scholars aged 4 to 19. Starting from a kit containing a salt and user instructions, classes had to prepare a crystal that met specific criteria according to their category of age. The composition of the salt - potassium dihydrogen phosphate (KDP) - was only disclosed to the participants during the final Awards Ceremony. This contest positively exceeded our expectations with almost 100 participating classes (ca. 1800 participants) and 54 specimens received over all categories.

19.
Small Methods ; 8(1): e2300833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37806773

RESUMO

Solid-state sodium ion conductors are crucial for the next generation of all-solid-state sodium batteries with high capacity, low cost, and improved safety. Sodium closo-carbadodecaborate (NaCB11 H12 ) is an attractive Na-ion conductor owing to its high thermal, electrochemical, and interfacial stability. Mechanical milling has recently been shown to increase conductivity by five orders of magnitude at room temperature, making it appealing for application in all-solid-state sodium batteries. Intriguingly, milling longer than 2 h led to a significant decrease in conductivity. In this study, X-ray Raman scattering (XRS) spectroscopy is used to probe the origin of the anomalous impact of mechanical treatment on the ionic conductivity of NaCB11 H12 . The B, C, and Na K-edge XRS spectra are successfully measured for the first time, and ab initio calculations are employed to interpret the results. The experimental and computational results reveal that the decrease in ionic conductivity upon prolonged milling is due to the increased proximity of Na to the CB11 H12 cage, caused by severe distortion of the long-range structure. Overall, this work demonstrates how the XRS technique, allowing investigation of low Z elements such as C and B in the bulk, can be used to acquire valuable information on the electronic structure of solid electrolytes and battery materials in general.

20.
Inorg Chem ; 52(17): 9941-7, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23968549

RESUMO

The compounds, Li3MZn5(BH4)15, M = Mg and Mn, represent the first trimetallic borohydrides and are also new cationic solid solutions. These materials were prepared by mechanochemical synthesis from LiBH4, MCl2 or M(BH4)2, and ZnCl2. The compounds are isostructural, and their crystal structure was characterized by in situ synchrotron radiation powder X-ray and neutron diffraction and DFT calculations. While diffraction provides an average view of the structure as hexagonal (a = 15.371(3), c = 8.586(2) Å, space group P63/mcm for Mg-compound at room temperature), the DFT optimization of locally ordered models suggests a related ortho-hexagonal cell. Ordered models that maximize Mg-Mg separation have the lowest DFT energy, suggesting that the hexagonal structure seen by diffraction is a superposition of three such orthorhombic structures in three orientations along the hexagonal c-axis. No conclusion about the coherent length of the orthorhombic structure can be however done. The framework in Li3MZn5(BH4)15 is of a new type. It contains channels built from face-sharing (BH4)6 octahedra. While X-ray and neutron powder diffraction preferentially localize lithium in the center of the octahedra, thus resulting in two weakly interconnected frameworks of a new type, the DFT calculations clearly favor lithium inside the shared triangular faces, leading to two interpenetrated mco-nets (mco-c type) with the basic tile being built from three tfa tiles, which is the framework type of the related bimetallic LiZn2(BH4)5. The new borohydrides Li3MZn5(BH4)15 are potentially interesting as solid-state electrolytes, if the lithium mobility within the octahedral channels is improved by disordering the site via heterovalent substitution. From a hydrogen storage point of view, their application seems to be limited as the compounds decompose to three known metal borohydrides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA